I am using gridsearchCV to tune the parameters (lambda, gamma, max_depth, eta) of the xgboost classifier model. I don't set early stopping or n_estimator value. And it takes a lot of time to run gs.fit(). I want to know is there a default value of n_estimators for xgboost. Thank you !
In version 1.5, the sklearn-API version XGBClassifier defaults to 100, whereas the native-API defaults to 10.
Default values for XGBClassifier:
n_estimators=100
Details are available here: https://xgboost.readthedocs.io/en/latest/parameter.html
XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,
importance_type='gain', interaction_constraints='',
learning_rate=0.300000012, max_delta_step=0, max_depth=6,
min_child_weight=1, missing=nan, monotone_constraints='()',
n_estimators=100, n_jobs=12, num_parallel_tree=1,
objective='multi:softprob', random_state=0, reg_alpha=0,
reg_lambda=1, scale_pos_weight=None, subsample=1,
tree_method='exact', use_label_encoder=False,
validate_parameters=1, verbosity=None)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With