I tried writing an in-place transpose function just for practice. Can anyone tell me what's the time and space complexity for this algorithm?
from copy import *
def transpose(matrix):
reference=deepcopy(matrix)
col_num=len(reference[0])
row_num=len(reference)
matrix.clear()
new=[list(map(lambda x: x[i],reference)) for i in range(col_num)]
for i in new:
matrix.append(new)
return matrix
x=[[ 1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
y=transpose(x)
Edit: Made my in-place transpose code more concise
Option 1: If it's a square matrix NxN then:
def transpose(matrix):
# Transpose O(N*N)
size = len(matrix)
for i in range(size):
for j in range(i+1, size):
matrix[j][i],matrix[i][j] = matrix[i][j],matrix[j][i]
Option 2: universal "pytonic" way is to do it like this:
mat = [[1,2,3],[4,5,6],[7,8,9]]
transpose = list(zip(*mat))
transpose
>>> [(1, 4, 7), (2, 5, 8), (3, 6, 9)]
zip function reference
For the second loop, change to the following. In your code, you are going into an infinite loop.
for row in matrix:
while len(row)!=row_num:
if len(row)<row_num:
row.append(0)
else:
row.pop()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With