Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Merging equi-partitioned data frames in Spark

In Hadoop a join/merge of large equi-partitioned data sets could be done without reshuffling and reduce phase simply using map-side join with CompositeInputFormat.

Trying to figure out to do it in Spark:

val x = sc.parallelize(Seq(("D", 1), ("C", 2), ("B", 3), ("A", 4))).toDF("k", "v")
    .repartition(col("k")).cache()
val y = sc.parallelize(Seq(("F", 5), ("E", 6), ("D", 7), ("C", 8))).toDF("k", "v")
    .repartition(col("k")).cache()

val xy = x.join(y, x.col("k") === y.col("k"), "outer")

x.show()    y.show()    xy.show()

+---+---+   +---+---+   +----+----+----+----+
|  k|  v|   |  k|  v|   |   k|   v|   k|   v|
+---+---+   +---+---+   +----+----+----+----+
|  A|  6|   |  C| 12|   |   A|   4|null|null|
|  B|  5|   |  D| 11|   |   B|   3|null|null|
|  C|  4|   |  E| 10|   |   C|   2|   C|   8|
|  D|  3|   |  F|  9|   |   D|   1|   D|   7|
|  E|  2|   |  G|  8|   |null|null|   E|   6|
|  F|  1|   |  H|  7|   |null|null|   F|   5|
+---+---+   +---+---+   +----+----+----+----+

So far so good. But when I check execution plan I see "unnecessary" sorts:

xy.explain

== Physical Plan ==
SortMergeOuterJoin [k#1283], [k#1297], FullOuter, None
:- Sort [k#1283 ASC], false, 0
:  +- InMemoryColumnarTableScan [k#1283,v#1284], InMemoryRelation [k#1283,v#1284], true, 10000, StorageLevel(true, true, false, true, 1), TungstenExchange hashpartitioning(k#1283,200), None, None
+- Sort [k#1297 ASC], false, 0
   +- InMemoryColumnarTableScan [k#1297,v#1298], InMemoryRelation [k#1297,v#1298], true, 10000, StorageLevel(true, true, false, true, 1), TungstenExchange hashpartitioning(k#1297,200), None, None

Is it possible to avoid sorts here?

Edit

For the reference, Hadoop had this "feature" available since 2007: https://issues.apache.org/jira/browse/HADOOP-2085

Update

As Lezzar pointed out repartition() alone is not sufficient to achieve equi-partitioned sorted state. I think now it needs to be followed by sortWithinPartitions() So that should do the trick:

val x = sc.parallelize(Seq(("F", 1), ("E", 2), ("D", 3), ("C", 4), ("B", 5), ("A", 6))).toDF("k", "v")
    .repartition(col("k")).sortWithinPartitions(col("k")).cache()
val y = sc.parallelize(Seq(("H", 7), ("G", 8), ("F", 9), ("E",10), ("D",11), ("C",12))).toDF("k", "v")
    .repartition(col("k")).sortWithinPartitions(col("k")).cache()

xy.explain()

== Physical Plan ==
SortMergeOuterJoin [k#1055], [k#1069], FullOuter, None
:- InMemoryColumnarTableScan [k#1055,v#1056], InMemoryRelation [k#1055,v#1056], true, 10000, StorageLevel(true, true, false, true, 1), Sort [k#1055 ASC], false, 0, None
+- InMemoryColumnarTableScan [k#1069,v#1070], InMemoryRelation [k#1069,v#1070], true, 10000, StorageLevel(true, true, false, true, 1), Sort [k#1069 ASC], false, 0, None

No sorting anymore!

like image 695
yurgis Avatar asked Jan 19 '26 07:01

yurgis


1 Answers

Why are you saying unnecessary sort ? The merge join needs the data to be sorted. And in IMHO, there is not a better strategy than a merge join to perform a full outer join, except if one of your dataframes is small enough to be broadcasted

like image 181
Lezzar Walid Avatar answered Jan 20 '26 20:01

Lezzar Walid