I have below dataframe and I want to compare 3 columns value & update True/False in another column "Id_Name_Table_Matching"
Below my code:
L1_ID = ['Region', 'Col2', 'Col3', 'Col4', 'Col5']
L1_Name = ['Region', 'Col2', 'Col3', 'Col4', 'Col5']
L1_Table = ['Region', 'Col2', 'Col3', 'Col4', 'Col5']
DF1 = pd.DataFrame({'dimId': L1_ID, 'dimName': L1_Name, 'sqlTableColumn': L1_Table})
I want to update true in "Id_Name_Table_Matching" if all columns value matches else false. I need script like below:
DF1['Id_Name_Table_Matching'] = DF1['dimId'] == DF1['dimName'] == DF1['sqlTableColumn']
Compare first columns with second, then with last and chain boolena masks by &
for bitwise AND
:
DF1['Id_Name_Table_Matching'] = (DF1['dimId'] == DF1['dimName']) &
(DF1['dimId'] == DF1['sqlTableColumn'])
General solution for compare multiple columns defined in list - all filtered columns compare by first one by DataFrame.eq
and then check if all values per rows are True
s by DataFrame.all
:
cols = ['dimId','dimName','sqlTableColumn']
DF1['Id_Name_Table_Matching'] = DF1[cols].eq(DF1[cols[0]], axis=0).all(axis=1)
print (DF1)
dimId dimName sqlTableColumn Id_Name_Table_Matching
0 Region Region Region True
1 Col2 Col2 Col2 True
2 Col3 Col3 Col3 True
3 Col4 Col4 Col4 True
4 Col5 Col5 Col5 True
Detail:
print (DF1[cols].eq(DF1[cols[0]], axis=0))
dimId dimName sqlTableColumn
0 True True True
1 True True True
2 True True True
3 True True True
4 True True True
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With