Hy! I am annotating image data through an online plateform which is generating output coordinates like this: bbox":{"top":634,"left":523,"height":103,"width":145} However, i want to use this annotation to train Yolo. So, I have to convert it in yolo format like this: 4 0.838021 0.605556 0.177083 0.237037
In this regard, i need help about how to convert it.
Here, For the size you need to pass the (w,h) and the for the box you need to pass (x,x+w, y, y+h) https://github.com/ivder/LabelMeYoloConverter/blob/master/convert.py
def convert(size, box):
dw = 1./size[0]
dh = 1./size[1]
x = (box[0] + box[1])/2.0
y = (box[2] + box[3])/2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
Alternatively, you can use below
def convert(x,y,w,h):
dw = 1.0/w
dh = 1.0/h
x = (2*x+w)/2.0
y = (2*y+w)/2.0
x = x*dw
y = y*dh
w = w*dw
h = h*dh
return (x,y,w,h)
Each grid cell predicts B bounding boxes as well as C class probabilities. The bounding box prediction has 5 components: (x, y, w, h, confidence). The (x, y) coordinates represent the center of the box, relative to the grid cell location (remember that, if the center of the box does not fall inside the grid cell, than this cell is not responsible for it). These coordinates are normalized to fall between 0 and 1. The (w, h) box dimensions are also normalized to [0, 1], relative to the image size. Let’s look at an example:
What does the coordinate output of yolo algorithm represent?
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With