I came across this post, which reports the following interview question:
Given two arrays of numbers, find if each of the two arrays have the same set of integers ? Suggest an algo which can run faster than NlogN without extra space?
The best that I can think of is the following:
(a) sort each array, and then (b) have two pointers moving along the two arrays and check if you find different values ... but step (a) has already NlogN complexity :(
(a) scan shortest array and put values into a map, and then (b) scan second array and check if you find a value that is not in the map ... here we have linear complexity, but we I use extra space
... so, I can't think of a solution for this question.
Ideas?
Thank you for all the answers. I feel many of them are right, but I decided to choose ruslik's one, because it gives an interesting option that I did not think about.
You can try a probabilistic approach by choosing a commutative function for accumulation (eg, addition or XOR) and a parametrized hash function.
unsigned addition(unsigned a, unsigned b);
unsigned hash(int n, int h_type);
unsigned hash_set(int* a, int num, int h_type){
unsigned rez = 0;
for (int i = 0; i < num; i++)
rez = addition(rez, hash(a[i], h_type));
return rez;
};
In this way the number of tries before you decide that the probability of false positive will be below a certain treshold will not depend on the number of elements, so it will be linear.
EDIT: In general case the probability of sets being the same is very small, so this O(n) check with several hash functions can be used for prefiltering: to decide as fast as possible if they are surely different or if there is a probability of them being equivalent, and if a slow deterministic method should be used. The final average complexity will be O(n), but worst case scenario will have the complexity of the determenistic method.
You said "without extra space" in the question but I assume that you actually mean "with O(1) extra space".
Suppose that all the integers in the arrays are less than k. Then you can use in-place radix sort to sort each array in time O(n log k) with O(log k) extra space (for the stack, as pointed out by yi_H in comments), and compare the sorted arrays in time O(n log k). If k does not vary with n, then you're done.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With