I'm using these two functions to find similar words and they return different lists. I'm wondering if these functions are sorted by most to least frequent association?
ContextIndex.similar_words(word) calculates the similarity score for each word as the sum of the products of frequencies in each context.
Text.similar() simply counts the number of unique contexts the words share.
similar_words() seems to contain a bug in NLTK 2.0. See the definition in nltk/text.py:
def similar_words(self, word, n=20):
    scores = defaultdict(int)
    for c in self._word_to_contexts[self._key(word)]:
        for w in self._context_to_words[c]:
            if w != word:
                print w, c, self._context_to_words[c][word], self._context_to_words[c][w]
                scores[w] += self._context_to_words[c][word] * self._context_to_words[c][w]
    return sorted(scores, key=scores.get)[:n]
The returned word list should be sorted in descending order of similarity score. Replace the return statement with:
return sorted(scores, key=scores.get)[::-1][:n]
In similar(), the call to similar_words() is commented out, perhaps due to this bug.
def similar(self, word, num=20):
    if '_word_context_index' not in self.__dict__:
        print 'Building word-context index...'
        self._word_context_index = ContextIndex(self.tokens,
                                                filter=lambda x:x.isalpha(),
                                                key=lambda s:s.lower())
#   words = self._word_context_index.similar_words(word, num)
    word = word.lower()
    wci = self._word_context_index._word_to_contexts
    if word in wci.conditions():
        contexts = set(wci[word])
        fd = FreqDist(w for w in wci.conditions() for c in wci[w]
                      if c in contexts and not w == word)
        words = fd.keys()[:num]
        print tokenwrap(words)
    else:
        print "No matches"
Note: in a FreqDist, unlike a dict, keys() returns a sorted list.
Example:
import nltk
text = nltk.Text(word.lower() for word in nltk.corpus.brown.words())
text.similar('woman')
similar_words = text._word_context_index.similar_words('woman')
print ' '.join(similar_words)
Output:
man day time year car moment world family house boy child country
job state girl place war way case question   # Text.similar()
#man ('a', 'who') 9 39   # output from similar_words(); see following explanation
#girl ('a', 'who') 9 6
#[...]
man number time world fact end year state house way day use part
kind boy matter problem result girl group   # ContextIndex.similar_words()
fd, the frequency distribution in similar(), is a tally of the number of contexts for each word:
fd = [('man', 52), ('day', 30), ('time', 30), ('year', 28), ('car', 24), ('moment', 24), ('world', 23) ...]
For each word in each context, similar_words() calculates the sum of the product of the frequencies:
man ('a', 'who') 9 39  # 'a man who' occurs 39 times in text;
                       # 'a woman who' occurs 9 times
                       # Similarity score for the context is the product:
                       #     score['man'] = 9 * 39
girl ('a', 'who') 9 6
writer ('a', 'who') 9 4
boy ('a', 'who') 9 3
child ('a', 'who') 9 2
dealer ('a', 'who') 9 2
...
man ('a', 'and') 6 11  # score += 6 * 11
...
man ('a', 'he') 4 6    # score += 4 * 6
...
[49 more occurrences of 'man']
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With