Recently I saw a question (can't find the link) that was something like this
I want to add a column on a data.frame that computes the variance of a different column while removing the current observation.
dt = data.table(
id = c(1:13),
v = c(9,5,8,1,25,14,7,87,98,63,32,12,15)
)
So, with a for() loop:
res = NULL
for(i in 1:13){
res[i] = var(dt[-i,v])
}
I tried doing this in data.table, using negative indexing with .I, but to my surprise none of the following works:
#1
dt[,var := var(dt[,v][-.I])]
#2
dt[,var := var(dt$v[-.I])]
#3
fun = function(x){
v = c(9,5,8,1,25,14,7,87,98,63,32,12,15)
var(v[-x])
}
dt[,var := fun(.I)]
#4
fun = function(x){
var(dt[-x,v])
}
dt[,var := fun(.I)]
All of those gives the same output:
id v var
1: 1 9 NA
2: 2 5 NA
3: 3 8 NA
4: 4 1 NA
5: 5 25 NA
6: 6 14 NA
7: 7 7 NA
8: 8 87 NA
9: 9 98 NA
10: 10 63 NA
11: 11 32 NA
12: 12 12 NA
13: 13 15 NA
What am I missing? I thought it was a problem with .I being passed to functions, but a dummy example:
fun = function(x,c){
x*c
}
dt[,dummy := fun(.I,2)]
id v var
1: 1 9 2
2: 2 5 4
3: 3 8 6
4: 4 1 8
5: 5 25 10
6: 6 14 12
7: 7 7 14
8: 8 87 16
9: 9 98 18
10: 10 63 20
11: 11 32 22
12: 12 12 24
13: 13 15 26
works fine.
Why can't I use .I in this specific scenario?
You may use .BY:
a
listcontaining a length 1 vector for each item inby
dt[ , var_v := dt[id != .BY$id, var(v)], by = id]
Variance is calculated once per row (by = id). In each calculation, the current row is excluded using id != .BY$id in the 'inner' i.
all.equal(dt$var_v, res)
# [1] TRUE
Why doesn't your code work? Because...
.Iis an integer vector equal toseq_len(nrow(x)),
...your -.I not only removes current observation, it removes all rows in one go from 'v'.
A small illustration which starts with your attempt (just without the assignment :=) and simplifies it step by step:
# your attempt
dt[ , var(dt[, v][-.I])]
# [1] NA
# without the `var`, indexing only
dt[ , dt[ , v][-.I]]
# numeric(0)
# an empty vector
# same indexing written in a simpler way
dt[ , v[-.I]]
# numeric(0)
# even more simplified, with a vector of values
# and its corresponding indexes (equivalent to .I)
v <- as.numeric(11:14)
i <- 1:4
v[i]
# [1] 11 12 13 14
x[-i]
# numeric(0)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With