Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

What to do when the sidebar is too long in shiny?

Tags:

r

shiny

In the following toy example I have a lot of sliders in the sidebar. For the last ones I cannot see the plot in right anymore. Is there any solution to this problem that doesn't involve deleting sliders?

# 01-kmeans-app

palette(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
  "#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999"))

library(shiny)

ui <- fluidPage(
  headerPanel('Iris k-means clustering'),
  sidebarPanel(
    selectInput('xcol', 'X Variable', names(iris)),
    selectInput('xcol', 'X Variable', names(iris)),
    selectInput('xcol', 'X Variable', names(iris)),
    selectInput('xcol', 'X Variable', names(iris)),
    selectInput('xcol', 'X Variable', names(iris)),
    selectInput('xcol', 'X Variable', names(iris)),
    selectInput('xcol', 'X Variable', names(iris)),
    selectInput('xcol', 'X Variable', names(iris)),
    selectInput('xcol', 'X Variable', names(iris)),
    selectInput('xcol', 'X Variable', names(iris)),
    selectInput('ycol', 'Y Variable', names(iris),
      selected = names(iris)[[2]]),
    numericInput('clusters', 'Cluster count', 3,
      min = 1, max = 9)
  ),
  mainPanel(
    plotOutput('plot1')
  )
)

server <- function(input, output) {

  selectedData <- reactive({
    iris[, c(input$xcol, input$ycol)]
  })

  clusters <- reactive({
    kmeans(selectedData(), input$clusters)
  })

  output$plot1 <- renderPlot({
    par(mar = c(5.1, 4.1, 0, 1))
    plot(selectedData(),
         col = clusters()$cluster,
         pch = 20, cex = 3)
    points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
  })

}

shinyApp(ui = ui, server = server)
like image 270
Fernando Hoces De La Guardia Avatar asked Oct 30 '25 12:10

Fernando Hoces De La Guardia


1 Answers

you could try to add a scroll down bar to the sidePanel

thanks to R shiny scroll wellPanel

# 01-kmeans-app

palette(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
          "#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999"))

library(shiny)

ui <- fluidPage(
    headerPanel('Iris k-means clustering'),
    sidebarPanel(id = "tPanel",style = "overflow-y:scroll; max-height: 600px; position:relative;",
        selectInput('xcol', 'X Variable', names(iris)),
        selectInput('xcol', 'X Variable', names(iris)),
        selectInput('xcol', 'X Variable', names(iris)),
        selectInput('xcol', 'X Variable', names(iris)),
        selectInput('xcol', 'X Variable', names(iris)),
        selectInput('xcol', 'X Variable', names(iris)),
        selectInput('xcol', 'X Variable', names(iris)),
        selectInput('xcol', 'X Variable', names(iris)),
        selectInput('xcol', 'X Variable', names(iris)),
        selectInput('xcol', 'X Variable', names(iris)),
        selectInput('ycol', 'Y Variable', names(iris),
                    selected = names(iris)[[2]]),
        numericInput('clusters', 'Cluster count', 3,
                     min = 1, max = 9)
    ),
    mainPanel(
        plotOutput('plot1')
    )
)

server <- function(input, output) {

    selectedData <- reactive({
        iris[, c(input$xcol, input$ycol)]
    })

    clusters <- reactive({
        kmeans(selectedData(), input$clusters)
    })

    output$plot1 <- renderPlot({
        par(mar = c(5.1, 4.1, 0, 1))
        plot(selectedData(),
             col = clusters()$cluster,
             pch = 20, cex = 3)
        points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
    })

}

shinyApp(ui = ui, server = server)
like image 167
MLavoie Avatar answered Nov 02 '25 03:11

MLavoie