I came to know the height of Random-BST/Red-Black trees and some other trees are O(log n).
I wonder, how this can be. Lets say I have a tree like this
The height of the tree is essentially the depth of the tree, which is in this case will be 4 (leaving the parent depth). But how could people say that the height can be represented by O(log n) notion?
I'm very to algorithms, and this point is confusing me a lot. Where I'm missing the point?
In algorithm complexity the variable n typically refers to the total number of items in a collection or involved in some calculation. In this case, n is the total number of nodes in the tree. So, in the picture you posted n=31. If the height of the tree is O(log n) that means that the height of the tree is proportional to the log of n. Since this is a binary tree, you'd use log base 2.
⌊log₂(31)⌋ = 4
Therefore, the height of the tree should be about 4—which is exactly the case in your example.
As I explained in a comment, a binary tree can have multiple cases:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With