I need an encryption scheme where the plaintext and ciphertext are composed entirely of decimal digits.
In addition, the plaintext and ciphertext must be the same length.
Also the underlying encryption algorithm should be an industry-standard. I don't mind if its symmetric (e.g AES) or asymmetric (e.g RSA) - but it must be a recognized algorithm for which I can get a FIPS-140 approved library. (Otherwise it won't get past the security review stage).
Using AES OFB is fine for preserving the length of hex-based input (i.e. where each byte has 256 possible values: 0x00 --> 0xFF). However, this will not work for my means as plaintext and ciphertext must be entirely decimal.
NB: "Entirely decimal" may be interpreted two ways - both of which are acceptable for my requirements:
Some more info: The max plaintext & ciphertext length is likely to be 10 decimal digits. (I.e. 10 bytes if using '0'-->'9' or 5 bytes if using BCD)
Consider following sample to see why AES fails: Input string is 8 digit number. Max 8-digit number is: 99999999 In hex this is: 0x5f5e0ff
This could be treated as 4 bytes: <0x05><0xf5><0xe0><0xff>
If I use AES OFB, I will get 4 byte output.
Highest possible 4-byte ciphertext output is <0xFF><0xFF><0xFF><0xFF>
Converting this back to an integer gives: 4294967295 I.e. a 10-digit number.
==> Two digits too long.
One last thing - there is no limit on the length any keys / IVs required.
Use AES/OFB, or any other stream cipher. It will generate a keystream of pseudorandom bits. Normally, you would XOR these bits with the plaintext. Instead:
For every decimal digit in the plaintext
Repeat
Take 4 bits from the keystream
Until the bits form a number less than 10
Add this number to the plaintext digit, modulo 10
To decrypt, do the same but subtract instead in the last step.
I believe this should be as secure as using the stream cipher normally. If a sequence of numbers 0-15 is indistinguishable from random, the subsequence of only those of the numbers that are smaller than 10 should still be random. Using add/subtract instead of XOR should still produce random output if one of the inputs are random.
One potential candidate is the FFX encryption mode, which has recently been submitted to NIST.
Stream ciphers require a nonce for security; the same key stream state must never be re-used for different messages. That nonce adds to the effective ciphertext length.
A block cipher used in a streaming mode has essentially the same issue: a unique initialization vector must be included with the cipher text.
Many stream ciphers are also vulnerable to ciphertext manipulation, where flipping a bit in the ciphertext undetectably flips the corresponding bit in the plaintext.
If the numbers are randomly chosen, and each number is encrypted only once, and the numbers are shorter than the block size, ECB offers good security. Under those conditions, I'd recommend AES in ECB mode as the solution that minimizes ciphertext length while providing strong privacy and integrity protection.
If there is some other information in the context of the ciphertext that could be used as an initialization vector (or nonce), then this could work. This could be something explicit, like a transaction identifier during a purchase, or something implicit like the sequence number of a message (which could be used as the counter in CTR mode). I guess that VeriShield is doing something like this.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With