I have two CSV files(Training set and Test Set). Since there are visible NaN values in few of the columns (status, hedge_value, indicator_code, portfolio_id, desk_id, office_id).
I start the process by replacing the NaN values with some huge value corresponding to the column.
Then I am doing LabelEncoding to remove the text data and convert them into Numerical data.
Now, when I try to do OneHotEncoding on the categorical data, I get the error. I tried giving input one by one into the OneHotEncoding constructor, but I get the same error for every column.
Basically, my end goal is to predict the return values, but I am stuck in the data preprocessing part because of this. How do I solve this issue?
I am using Python3.6 with Pandas and Sklearn for data processing.
Code
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
test_data = pd.read_csv('test.csv')
train_data = pd.read_csv('train.csv')
# Replacing Nan values here
train_data['status']=train_data['status'].fillna(2.0)
train_data['hedge_value']=train_data['hedge_value'].fillna(2.0)
train_data['indicator_code']=train_data['indicator_code'].fillna(2.0)
train_data['portfolio_id']=train_data['portfolio_id'].fillna('PF99999999')
train_data['desk_id']=train_data['desk_id'].fillna('DSK99999999')
train_data['office_id']=train_data['office_id'].fillna('OFF99999999')
x_train = train_data.iloc[:, :-1].values
y_train = train_data.iloc[:, 17].values
# =============================================================================
# from sklearn.preprocessing import Imputer
# imputer = Imputer(missing_values="NaN", strategy="mean", axis=0)
# imputer.fit(x_train[:, 15:17])
# x_train[:, 15:17] = imputer.fit_transform(x_train[:, 15:17])
#
# imputer.fit(x_train[:, 12:13])
# x_train[:, 12:13] = imputer.fit_transform(x_train[:, 12:13])
# =============================================================================
# Encoding categorical data, i.e. Text data, since calculation happens on numbers only, so having text like
# Country name, Purchased status will give trouble
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
x_train[:, 0] = labelencoder_X.fit_transform(x_train[:, 0])
x_train[:, 1] = labelencoder_X.fit_transform(x_train[:, 1])
x_train[:, 2] = labelencoder_X.fit_transform(x_train[:, 2])
x_train[:, 3] = labelencoder_X.fit_transform(x_train[:, 3])
x_train[:, 6] = labelencoder_X.fit_transform(x_train[:, 6])
x_train[:, 8] = labelencoder_X.fit_transform(x_train[:, 8])
x_train[:, 14] = labelencoder_X.fit_transform(x_train[:, 14])
# =============================================================================
# import numpy as np
# x_train[:, 3] = x_train[:, 3].reshape(x_train[:, 3].size,1)
# x_train[:, 3] = x_train[:, 3].astype(np.float64, copy=False)
# np.isnan(x_train[:, 3]).any()
# =============================================================================
# =============================================================================
# from sklearn.preprocessing import StandardScaler
# sc_X = StandardScaler()
# x_train = sc_X.fit_transform(x_train)
# =============================================================================
onehotencoder = OneHotEncoder(categorical_features=[0,1,2,3,6,8,14])
x_train = onehotencoder.fit_transform(x_train).toarray() # Replace Country Names with One Hot Encoding.
Error
Traceback (most recent call last):
File "<ipython-input-4-4992bf3d00b8>", line 58, in <module>
x_train = onehotencoder.fit_transform(x_train).toarray() # Replace Country Names with One Hot Encoding.
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py", line 2019, in fit_transform
self.categorical_features, copy=True)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py", line 1809, in _transform_selected
X = check_array(X, accept_sparse='csc', copy=copy, dtype=FLOAT_DTYPES)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py", line 453, in check_array
_assert_all_finite(array)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py", line 44, in _assert_all_finite
" or a value too large for %r." % X.dtype)
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
I was going through the dataset again after posting the question and I found another column with a NaN. I can't believe I wasted so much time on this when I could have just used the Pandas function to get the list of columns that had NaN. So, using the following code, I found that I missed out three columns. I was visually searching for NaN when I could have just used this function. After handling these new NaNs, the code worked properly.
pd.isnull(train_data).sum() > 0
Result
portfolio_id False
desk_id False
office_id False
pf_category False
start_date False
sold True
country_code False
euribor_rate False
currency False
libor_rate True
bought True
creation_date False
indicator_code False
sell_date False
type False
hedge_value False
status False
return False
dtype: bool
The error is in your other features that you are treating as non-categorical features.
Those columns like 'hedge_value', 'indicator_code' etc contains mixed type data like TRUE, FALSE from the original csv and 2.0 from your fillna() call. The OneHotEncoder is not able to process them.
As mentioned in OneHotEncoder fit() documentation:
fit(X, y=None)
Fit OneHotEncoder to X.
Parameters:
X : array-like, shape [n_samples, n_feature]
Input array of type int.
You can see that it requires all X to be of numerical (int, but float will do) type.
As a workaround you can do this to encode your categorical features:
X_train_categorical = x_train[:, [0,1,2,3,6,8,14]]
onehotencoder = OneHotEncoder()
X_train_categorical = onehotencoder.fit_transform(X_train_categorical).toarray()
And then concatenate this with your non-categorical features.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With