I'm optimizing a more complex code, but got stuck with this problem.
a<-array(sample(c(1:10),100,replace=TRUE),c(10,10))
m<-array(sample(c(1:10),100,replace=TRUE),c(10,10))
f<-array(sample(c(1:10),100,replace=TRUE),c(10,10))
g<-array(NA,c(10,10))
I need to use the values in a & m to index f and assign the value from f to g
i.e. g[1,1]<-f[a[1,1],m[1,1]] except for all the indexes, and as optimally/fast as possible
I could obviously make a for loop to do this for me but that seems rather dumb and slow. It seems like I should be able to us something in the apply family, but I've had no luck with figuring out how to do that. I do need to keep the data structured as it is here so that I can use matrix operations in different parts of my code. I've been searching for an answer to this but haven't found anything particularly helpful yet.
g[] <- f[cbind(c(a), c(m))]
This takes advantage of the fact that matrices can be addressed as vectors and using a matrix as the index.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With