I am using the VGG16 Model, which expects a 4D Tensor as input. When I call model.fit(xtrain, ytrain, ...)
my xtrain
is a list of 3D Tensor [size, size, features]
- so in this case: [224,224,3]
What I want is 4D Tensors with [len(images), size, size, features]
How could I modify my code to get there?
I tried tf.expand_dims
and tf.concant
but it didn't work.
# Transforming my image to a 3D Tensor
image = tf.io.read_file(image)
image = tf.image.decode_jpeg(image, channels=3)
image = tf.image.resize(image, [IMG_SIZE, IMG_SIZE])
image = image / 255.0
Error msg after model.fit
:
Error when checking input: expected input_1 to have 4 dimensions, but got array with shape (224, 224, 3)
It looks like you are reading in only a single image and passing that. If that's the case, you can add a dimension of 1 to the first axis of the image. There's lots of ways to do that.
Using reshape
:
image = image.reshape(1, 224, 224, 3)
Using some fancy numpy slicing notation to add an axis (personal favorite):
image = image[None, ...]
Using numpy.expand_dims()
as explained in Abhijit's answer.
I imagine you want to be reading a bunch of images in though. Possibly an issue with your input process? Can you wrap your read in a loop and read multiple files? Something like:
images = []
for file in image_files:
image = tf.io.read_file(file)
# ...
images.append(image)
images = np.asarray(images)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With