Scenario:
Building a commercial app consisting in an RESTful backend with symfony2 and a frontend in AngularJS
This app will never be used by many customers (if I get to sell 100 that would be fantastic. Hopefully much more, but in any case will be massive)
I want to have a multi tenant structure for the database with one schema per customer (they store sensitive information for their customers)
I'm aware of problem when updating schemas but I will have to live with it.
Today I have a MySQL demo database that I will clone each time a new customer purchase the app.
There is no relationship between my customers, so I don't need to communicate with multiple shards for any query
For one customer, they can be using the app from several devices at the time, but there won't be massive write operations in the db
My question
Trying to set some functional tests for the backend API I read about having a dedicated sqlite database for loading testing data, which seems to be good idea.
However I wonder if it's also a good idea to switch from MySQL to SQLite3 database as my main database support for the application, and if it's a common practice to have one dedicated SQLite3 database PER CLIENT. I've never used SQLite and I have no idea if the process of updating a schema and replicate the changes in all the databases is done in the same way as for other RDBMS
Is this a correct scenario for SQLite? Any suggestion (aka tutorial) in how to achieve this?
[I wonder] if it's a common practice to have one dedicated SQLite3 database PER CLIENT
Only if the database is deployed along with the application, like on a phone. Otherwise I've never heard of such a thing.
I've never used SQLite and I have no idea if the process of updating a schema and replicate the changes in all the databases is done in the same way as for other RDBMS
SQLite is a SQL database and responds to ALTER TABLE and the like. As for updating all the schemas, you'll have to re-run the update for all schemas.
Schema synching is usually handled by an outside utility, usually your ORM will have something. Some are server agnostic, some only support specific servers. There are also dedicated database change management tools such as Sqitch.
However I wonder if it's also a good idea to switch from MySQL to SQLite3 database as my main database support for the application, and
SQLite's main advantage is not requiring you to install and run a server. That makes sense for quick projects or where you have to deploy the database, like a phone app. For server based application there's no problem having a database server. SQLite's very restricted set of SQL features becomes a disadvantage. It will also likely run slower than a server database for anything but the simplest queries.
Trying to set some functional tests for the backend API I read about having a dedicated sqlite database for loading testing data, which seems to be good idea.
Under no circumstances should you test with a different database than the production database. Databases do not all implement SQL the same, MySQL is particularly bad about this, and your tests will not reflect reality. Running a MySQL instance for testing is not much work.
This separate schema thing claims three advantages...
What they're proposing is equivalent to having a separate, customized copy of the code for every tenant. You wouldn't do that, it's obviously a maintenance nightmare. Code at least has the advantage of version control systems with branching and merging. I know only of one database management tool that supports branching, Sqitch.
Let's imagine you've made a custom change to tenant 5's schema. Now you have a general schema change you'd like to apply to all of them. What if the change to 5 conflicts with this? What if the change to 5 requires special data migration different from everybody else? Now let's imagine you've made custom changes to ten schemas. A hundred. A thousand? Nightmare.
Different schemas will require different queries. The application will have to know which schema each tenant is using, there will have to be some sort of schema version map you'll need to maintain. And every different possible query for every different possible schema will have to be maintained in the application code. Nightmare.
Yes, putting each tenant in a separate schema is more secure, but that only protects against writing bad queries or including a query builder (which is a bad idea anyway). There are better ways mitigate the problem such as the view filter suggested in the docs. There are many other ways an attacker can access tenant data that this doesn't address: gain a database connection, gain access to the filesystem, sniff network traffic. I don't see the small security gain being worth the maintenance nightmare.
As for scaling, the article is ten years out of date. There are far, far better ways to achieve parallel scaling then to coarsely put schemas on different servers. There are entire databases dedicated to this idea. Fortunately, you don't need any of this! Scaling won't be a problem for you until you have tens of thousands to millions of tenants. The idea of front loading your design with a schema maintenance nightmare for a hypothetical big parallel scaling problem is putting the cart so far before the horse, it's already at the pub having a pint.
If you want to use a relational database I would recommend PostgreSQL. It has a very rich SQL implementation, its fast and scales well, and it has something that renders this whole idea of separate schemas moot: a built in JSON type. This can be used to implement the "extensibility" mentioned in the article. Each table can have a meta column using the JSON type that you can throw any extra data into you like. The application does not need special queries, the meta column is always there. PostgreSQL's JSON operators make working with the meta data very easy and efficient.
You could also look into a NoSQL database. There are plenty to choose from and many support custom schemas and parallel scaling. However, it's likely you will have to change your choice of framework to use one that supports NoSQL.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With