I am filling a sparse matrix P (230k,290k) with values coming from a text file which I read line by line, here is the (simplified) code
while ...
C = textscan(text_line,'%d','delimiter',',','EmptyValue', 0);
line_number = line_number+1;
P(line_number,:)=C{1};
end
the problem I have is that while at the beginning the
P(line_number,:)=C{1};
statement is fast, after a few thousands lines become exterely slow, I guess because Matlab need to find the memory space to allocate every time. Is there a way to pre-allocate memory with sparse matrixes? I don't think so but maybe I am missing something. Any other advise which can speed up the operation (e.g. having a lot of free RAM can make the difference?)
There's a sixth input argument to sparse that tells the number of nonzero elements in the matrix. That's used by Matlab to preallocate:
S = sparse(i,j,s,m,n,nzmax)uses vectorsi,j, andsto generate anm-by-nsparse matrix such thatS(i(k),j(k)) = s(k), with space allocated fornzmaxnonzeros.
So you could initiallize with
P = sparse([],[],[],230e3,290e3,nzmax);
You can make a guess about the number of nonzeros (perhaps checking file size?) and use that as nzmax. If it turns you need more nonzero elements in the end, Matlab will preallocate on the fly (slowly).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With