Given the following:
class TestClass extends TestTrait {
def doesSomething() = methodValue + intValue
}
trait TestTrait {
val intValue = 4
val unusedValue = 5
def methodValue = "method"
def unusedMethod = "unused method"
}
When the above code runs, will TestClass actually have memory allocated to unusedValue or unusedMethod? I've used javap and I know that there exists an unusedValue and an unusedMethod, but I cannot determine if they are actually populated with any sort of state or memory allocation.
Basically, I'm trying to understand if a class ALWAYS gets all that a trait provides, or if the compiler is smart enough to only provide what the class actually uses from the trait?
If a trait always imposes itself on a class, it seems like it could be inefficient, since I expect many programmers will use traits as mixins and therefore wasting memory everywhere.
Thanks to all who read and help me get to the bottom of this!
Generally speaking, in languages like Scala and Java and C++, each class has a table of pointers to its instance methods. If your question is whether the Scala compiler will allocate slots in the method table for unusedMethod then I would say yes it should.
I think your question is whether the Scala compiler will look at the body of TestClass and say "whoa, I only see uses of methodValue and intValue, so being a good compiler I'm going to refrain from allocating space in TestClass's method table for unusedMethod. But it can't really do this in general. The reason is, TestClass will be compiled into a class file TestClass.class and this class may be used in a library by programmers that you don't even know.
And what will they want to do with your class? This:
var x = new TestClass();
print(x.unusedMethod)
See, the thing is the compiler can't predict who is going to use this class in the future, so it puts all methods into its method table, even the ones not called by other methods in the class. This applies to methods declared in the class or picked up via an implemented trait.
If you expect the compiler to do global system-wide static analysis and optimization over a fixed, closed system then I suppose in theory it could whittle away such things, but I suspect that would be a very expensive optimization and not really worth it. If you need this kind of memory savings you would be better off writing smaller traits on your own. :)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With