I would like to use data.table
as an alternative to aggregate()
or ddply()
, as these two methods aren't scaling to large objects as efficiently as hoped. Unfortunately, I haven't figured out how to get vector-returning aggregate functions to generate multiple columns in the result from data.table
. For example:
# required packages
library(plyr)
library(data.table)
# simulated data
x <- data.table(value=rnorm(100), g=rep(letters[1:5], each=20))
# ddply output that I would like to get from data.table
ddply(data.frame(x), 'g', function(i) quantile(i$value))
g 0% 25% 50% 75% 100%
1 a -1.547495 -0.7842795 0.202456288 0.6098762 2.223530
2 b -1.366937 -0.4418388 -0.085876995 0.7826863 2.236469
3 c -2.064510 -0.6411390 -0.257526983 0.3213343 1.039053
4 d -1.773933 -0.5493362 -0.007549273 0.4835467 2.116601
5 e -0.780976 -0.2315245 0.194869630 0.6698881 2.207800
# not quite what I am looking for:
x[, quantile(value), by=g]
g V1
1: a -1.547495345
2: a -0.784279536
3: a 0.202456288
4: a 0.609876241
5: a 2.223529739
6: b -1.366937074
7: b -0.441838791
8: b -0.085876995
9: b 0.782686277
10: b 2.236468703
Essentially, the output from ddply
and aggregate
are in wide-format, while the output from the data.table
is in long format. Is the answer reshaping the data, or some additional arguments to my data.table
object?
Try coercing to a list:
> x[, as.list(quantile(value)), by=g]
g 0% 25% 50% 75% 100%
1: a -1.7507334 -0.632331909 0.07435249 0.7459778 1.428552
2: b -2.2043481 -0.005652353 0.10534325 0.5769475 1.241754
3: c -1.9313985 -1.120737610 -0.26116926 0.6953009 1.360017
4: d -0.7434664 -0.055232431 0.22062823 1.1864389 3.021124
5: e -2.0101657 -0.468674094 0.20209610 0.6286448 2.433152
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With