I have an image with bounding box in it, and I want to resize the image.
img = cv2.imread("img.jpg",3)
x_ = img.shape[0]
y_ = img.shape[1]
img = cv2.resize(img,(416,416));
Now I want to calculate the scale factor:
x_scale = ( 416 / x_)
y_scale = ( 416 / y_ )
And draw an image, this is the code for the original bounding box:
( 128, 25, 447, 375 ) = ( xmin,ymin,xmax,ymax)
x = int(np.round(128*x_scale))
y = int(np.round(25*y_scale))
xmax= int(np.round (447*(x_scale)))
ymax= int(np.round(375*y_scale))
However using this I get:
While the original is:
I don't see any flag in this logic, what's wrong?
Whole code:
imageToPredict = cv2.imread("img.jpg",3)
print(imageToPredict.shape)
x_ = imageToPredict.shape[0]
y_ = imageToPredict.shape[1]
x_scale = 416/x_
y_scale = 416/y_
print(x_scale,y_scale)
img = cv2.resize(imageToPredict,(416,416));
img = np.array(img);
x = int(np.round(128*x_scale))
y = int(np.round(25*y_scale))
xmax= int(np.round (447*(x_scale)))
ymax= int(np.round(375*y_scale))
Box.drawBox([[1,0, x,y,xmax,ymax]],img)
and drawbox
def drawBox(boxes, image):
for i in range (0, len(boxes)):
cv2.rectangle(image,(boxes[i][2],boxes[i][3]),(boxes[i][4],boxes[i][5]),(0,0,120),3)
cv2.imshow("img",image)
cv2.waitKey(0)
cv2.destroyAllWindows()
The image and the data for the bounding box are loaded separately. I am drawing the bounding box inside the image. The image does not contain the box itself.
I believe there are two issues:
x_
and y_
because shape[0]
is actually y-dimension and shape[1]
is the x-dimension(160, 35)
- (555, 470)
rather than (128,25)
- (447,375)
that you use in the code.If I use the following code:
import cv2
import numpy as np
def drawBox(boxes, image):
for i in range(0, len(boxes)):
# changed color and width to make it visible
cv2.rectangle(image, (boxes[i][2], boxes[i][3]), (boxes[i][4], boxes[i][5]), (255, 0, 0), 1)
cv2.imshow("img", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
def cvTest():
# imageToPredict = cv2.imread("img.jpg", 3)
imageToPredict = cv2.imread("49466033\\img.png ", 3)
print(imageToPredict.shape)
# Note: flipped comparing to your original code!
# x_ = imageToPredict.shape[0]
# y_ = imageToPredict.shape[1]
y_ = imageToPredict.shape[0]
x_ = imageToPredict.shape[1]
targetSize = 416
x_scale = targetSize / x_
y_scale = targetSize / y_
print(x_scale, y_scale)
img = cv2.resize(imageToPredict, (targetSize, targetSize));
print(img.shape)
img = np.array(img);
# original frame as named values
(origLeft, origTop, origRight, origBottom) = (160, 35, 555, 470)
x = int(np.round(origLeft * x_scale))
y = int(np.round(origTop * y_scale))
xmax = int(np.round(origRight * x_scale))
ymax = int(np.round(origBottom * y_scale))
# Box.drawBox([[1, 0, x, y, xmax, ymax]], img)
drawBox([[1, 0, x, y, xmax, ymax]], img)
cvTest()
and use your "original" image as "49466033\img.png",
I get the following image
And as you can see my thinner blue line lies exactly inside your original red line and it stays there whatever targetSize
you chose (so the scaling actually works correctly).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With