Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

python pandas stop fillna at last non NaN value

I have a dataframe where the index is date increasing and the columns are observations of variables. The array is sparse. My goal is to propogate forward in time a known value to fill NaN but I want to stop at the last non-NaN value as that last value signifies the "death" of the variable.

e.g. for the dataset

a b c
2020-01-01 NaN 11 NaN
2020-02-01 1 NaN NaN
2020-03-01 NaN NaN 14
2020-04-01 2 NaN NaN
2020-05-01 NaN NaN NaN
2020-06-01 NaN NaN 15
2020-07-01 3 NaN NaN
2020-08-01 NaN NaN NaN

I want to output

a b c
2020-01-01 NaN 11 NaN
2020-02-01 1 NaN NaN
2020-03-01 1 NaN 14
2020-04-01 2 NaN 14
2020-05-01 2 NaN 14
2020-06-01 2 NaN 15
2020-07-01 3 NaN NaN
2020-08-01 NaN NaN NaN

I can identify the index of the last observation using df.notna()[::-1].idxmax() but can't figure out how to use this as a way to limit the fillna function

I'd be grateful for any suggestions. Many thanks

like image 266
JohnnieL Avatar asked Dec 31 '25 07:12

JohnnieL


1 Answers

Use DataFrame.where for forward filling by mask - testing only non missing values by back filling them:

df = df.where(df.bfill().isna(), df.ffill())
print (df)
              a     b     c
2020-01-01  NaN  11.0   NaN
2020-02-01  1.0   NaN   NaN
2020-03-01  1.0   NaN  14.0
2020-04-01  2.0   NaN  14.0
2020-05-01  2.0   NaN  14.0
2020-06-01  2.0   NaN  15.0
2020-07-01  3.0   NaN   NaN
2020-08-01  NaN   NaN   NaN

Your solution should be used too if compare Series converted to numpy array with broadcasting:

mask = df.notna()[::-1].idxmax().to_numpy() < df.index.to_numpy()[:, None]
df = df.where(mask, df.ffill())
print (df)
              a     b     c
2020-01-01  NaN  11.0   NaN
2020-02-01  1.0   NaN   NaN
2020-03-01  1.0   NaN  14.0
2020-04-01  2.0   NaN  14.0
2020-05-01  2.0   NaN  14.0
2020-06-01  2.0   NaN  15.0
2020-07-01  3.0   NaN   NaN
2020-08-01  NaN   NaN   NaN
like image 132
jezrael Avatar answered Jan 01 '26 21:01

jezrael



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!