My DataFrame:
from random import random, randint
from pandas import DataFrame
t = DataFrame({"metasearch":["A","B","A","B","A","B","A","B"],
"market":["A","B","A","B","A","B","A","B"],
"bid":[random() for i in range(8)],
"clicks": [randint(0,10) for i in range(8)],
"country_code":["A","A","A","A","A","B","A","B"]})
I want to fit LinearRegression for each market, so I:
1) Group df - groups = t.groupby(by="market")
2) Prepare function to fit model on a group -
from sklearn.linear_model import LinearRegression
def group_fitter(group):
lr = LinearRegression()
X = group["bid"].fillna(0).values.reshape(-1,1)
y = group["clicks"].fillna(0)
lr.fit(X, y)
return lr.coef_[0] # THIS IS A SCALAR
3) Create a new Series with market as an index and coef as a value:
s = groups.transform(group_fitter)
But the 3rd step fails: KeyError: ('bid_cpc', 'occurred at index bid')
I think you need instead transform use apply because working with more columns in function together and for new column use join:
from sklearn.linear_model import LinearRegression
def group_fitter(group):
lr = LinearRegression()
X = group["bid"].fillna(0).values.reshape(-1,1)
y = group["clicks"].fillna(0)
lr.fit(X, y)
return lr.coef_[0] # THIS IS A SCALAR
groups = t.groupby(by="market")
df = t.join(groups.apply(group_fitter).rename('new'), on='market')
print (df)
bid clicks country_code market metasearch new
0 0.462734 9 A A A -8.632301
1 0.438869 5 A B B 6.690289
2 0.047160 9 A A A -8.632301
3 0.644263 0 A B B 6.690289
4 0.579040 0 A A A -8.632301
5 0.820389 6 B B B 6.690289
6 0.112341 5 A A A -8.632301
7 0.432502 0 B B B 6.690289
Just return the group from the function instead of the coefficient.
# return the group instead of scaler value
def group_fitter(group):
lr = LinearRegression()
X = group["bid"].fillna(0).values.reshape(-1,1)
y = group["clicks"].fillna(0)
lr.fit(X, y)
group['coefficient'] = lr.coef_[0] # <- This is the changed line
return group
# the new column gets added to the data
s = groups.apply(group_fitter)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With