In SciPy one can implement a beta distribution as follows:
x=640495496
alpha=1.5017096
beta=628.110247
A=0
B=148000000000
p = scipy.stats.beta.cdf(x, alpha, beta, loc=A, scale=B-A)
Now, suppose I have a Pandas dataframe with the columns x,alpha,beta,A,B. How do I apply the beta distribution to each row, appending the result as a new column?
Given that I suspect that pandas apply is just looping over all rows, and the scipy.stats distributions have quite a bit of overhead in each call, I would use a vectorized version:
>>> from scipy import stats
>>> df['p'] = stats.beta.cdf(df['x'], df['alpha'], df['beta'], loc=df['A'], scale=df['B']-df['A'])
>>> df
A B alpha beta x p
0 0 148000000000 1.501710 628.110247 640495496 0.858060
1 0 148000000000 1.501704 620.110000 640495440 0.853758
Need apply
with function scipy.stats.beta.cdf
and axis=1
:
df['p'] = df.apply(lambda x: scipy.stats.beta.cdf(x['x'],
x['alpha'],
x['beta'],
loc=x['A'],
scale=x['B']-x['A']), axis=1)
Sample:
import scipy.stats
df = pd.DataFrame({'x':[640495496, 640495440],
'alpha':[1.5017096,1.5017045],
'beta':[628.110247, 620.110],
'A':[0,0],
'B':[148000000000,148000000000]})
print (df)
A B alpha beta x
0 0 148000000000 1.501710 628.110247 640495496
1 0 148000000000 1.501704 620.110000 640495440
df['p'] = df.apply(lambda x: scipy.stats.beta.cdf(x['x'],
x['alpha'],
x['beta'],
loc=x['A'],
scale=x['B']-x['A']), axis=1)
print (df)
A B alpha beta x p
0 0 148000000000 1.501710 628.110247 640495496 0.858060
1 0 148000000000 1.501704 620.110000 640495440 0.853758
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With