Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Project a 2D point from one camera view onto the corresponding 2D point in another camera view of the same scene

I'm using open cv in C++ in multi-view scene with two cameras. I have the intrinsic and extrinsic parameters for both cameras.

I would like to map a (X,Y) point in View 1 to the same point in the second View. I'm am slightly unsure how I should use the intrinsic and extrinsic matrices in order to convert the points to a 3D world and finally end up with the new 2D point in view 2.

like image 436
Luke Zammit Avatar asked Oct 24 '25 09:10

Luke Zammit


1 Answers

It is (normally) not possible to take a 2D coordinate in one image and map it into another 2D coordinate without some additional information.

The main problem is that a single point in the left image will map to a line in the right image (an epipolar line). There are an infinite number of possible corresponding locations because depth is a free parameter. Secondly it's entirely possible that the point doesn't exist in the right image i.e. it's occluded. Finally it may be difficult to determine exactly which point is the right correspondence, e.g. if there is no texture in the scene or if it contains lots of repeating features.

Although the fundamental matrix (which you get out of cv::StereoCalibrate anyway) gives you a constraint between points in each camera: x'Fx = 0, for a given x' there will be a whole family of x's which will satisfy the equation.

Some possible solutions are as follows:

  1. You know the 3D location of a 2D point in one image. Provided that 3D point is in a common coordinate system, you just use cv::projectPoints with the calibration parameters of the other camera you want to project into.

  2. You do some sparse feature detection and matching using something like SIFT or ORB. Then you can calculate a homography to map the points from one image to the other. This makes a few assumptions about things being planes. If you Google panorama homography, there are plenty of lecture slides detailing this.

  3. You calibrate your cameras, perform an epipolar rectification (cv::StereoRectify, cv::initUndistortRectifyMap, cv::remap) and then run them through a stereo matcher. The output is a disparity map which gives you exactly what you want: a per-pixel mapping from one camera to the other. That is, left[y,x] = right[y, x+disparity_map[y,x]].

(1) is by far the easiest, but it's unlikely you have that information already. (2) is often doable and might be suitable, and as another commenter pointed out will be poor where the planarity assumption fails. (3) is the general (ideal) solution, but has its own drawbacks and relies on the images being amenable to dense matching.

like image 85
Josh Avatar answered Oct 27 '25 03:10

Josh



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!