I have a function which returns a boxed trait object, and another function that accepts a reference to an object implementing the same trait. I would like to pass a reference to the boxed trait object to the second function, but I am unable to figure out how to do this.
Example simplified code:
trait MyTrait {
fn foo(&self);
}
struct A {}
impl MyTrait for A {
fn foo(&self) {
println!("A");
}
}
struct B {}
impl MyTrait for B{
fn foo(&self) {
println!("B");
}
}
enum MyEnum {
A,
B,
}
fn create_object(my_enum: MyEnum) -> Box<dyn MyTrait> {
let boxed_value: Box<dyn MyTrait> = match my_enum {
MyEnum::A => Box::new(A{}),
MyEnum::B => Box::new(B{}),
};
boxed_value
}
fn do_something<T: MyTrait>(obj: &T) {
obj.foo();
}
fn main() {
use std::borrow::BorrowMut;
let boxed_value = create_object(MyEnum::A);
do_something(boxed_value.borrow_mut());
}
The error I get:
error[E0282]: type annotations needed
--> src\main.rs:42:5
|
42 | do_something(boxed_value.borrow_mut());
| ^^^^^^^^^^^^ ------------------------ this method call resolves to `&mut Borrowed`
| |
| cannot infer type for type parameter `T` declared on the function `do_something`
Intuitively, I would have hoped that in this case Rust would use dynamic dispatch and wouldn't care about the concrete type T (similarly to what happens in C++ when you pass a reference to a base class), but this seems not to be the case.
How do I pass a reference to the boxed trait object (Box<dyn MyTrait>) to the second function (do_something)? Is this possible in some way? A solution requiring a change to do_something would also be acceptable.
Intuitively, I would have hoped that in this case Rust would use dynamic dispatch and wouldn't care about the concrete type T (similarly to what happens in C++ when you pass a reference to a base class), but this seems not to be the case.
You can make that happen with a cast (or just type ascription, eventually) and by relaxing the default requirement for T to be Sized:
fn do_something<T: MyTrait + ?Sized>(obj: &T) {
obj.foo();
}
use std::borrow::Borrow;
let boxed_value = create_object(MyEnum::A);
do_something(boxed_value.borrow() as &dyn MyTrait);
But if you’re not otherwise using T, you can opt into dynamic dispatch on the function side much more simply:
fn do_something(obj: &dyn Borrow) {
obj.foo();
}
use std::borrow::Borrow;
let boxed_value = create_object(MyEnum::A);
do_something(boxed_value.borrow());
And if you don’t care that obj is a borrow and want to leave the option of static dispatch open, you can implement MyTrait for &dyn MyTrait:
impl MyTrait for &dyn MyTrait {
fn foo(&self) {
(*self).foo();
}
}
fn do_something<T: MyTrait>(obj: T) {
obj.foo();
}
// or, again, if not otherwise using T:
fn do_something(obj: impl MyTrait) {
obj.foo();
}
use std::borrow::Borrow;
let boxed_value = create_object(MyEnum::A);
do_something(boxed_value.borrow());
Instead of trying to unbox the value
you can instead implement MyTrait on Box<dyn MyTrait>
and forward to the boxed value.
impl MyTrait for Box<dyn MyTrait> {
fn foo(&self) {
self.deref().foo()
}
}
Then you don't even need to call borrow_mut.
fn main() {
use std::borrow::BorrowMut;
let boxed_value = create_object(MyEnum::A);
do_something(&boxed_value);
}
There's a working example in the playground
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With