I have a number (say a million) of small matrices 4 x 3. I would like to do several simple operations with them and I would like my CUDA kernel to parallelize the matrices index only, (not the row/column operations). Let me explain better: I pass as an input to my GPU Kernel an array of matrices A[MatrixNumb][row][col] and I would like operation parallelization to be only on the MatrixNumb (therefore I want to force the operation in one dimension. The example below is with 3 Matrices only, for simplicity. It compiles and runs, however it gives me the wrong results. Basically, it returns the same matrices I give it as an input. I cannot understand why and if I am making any mistake, how can I re-write/think the code? I wrote the code using also CudaMallocManaged, in order to have shared memory between host and device, however it gives me the same results using the classic CudaMalloc and using memcpy.
Source.cpp
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <assert.h>
#include <chrono>
#include <random>
#include <time.h>
#include <math.h>
#include <cuda_runtime.h>
#include "device_launch_parameters.h"
#include <cuda.h>
#include <device_functions.h>
using namespace std;
__global__ void SVD(double*** a, const int m, const int n, const int numMatrices, double** w)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
// I would like that each thread runs these loops independently
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
a[idx][i][j] = (a[idx][i][j] * a[idx][i][j]) * 3.14;
}
}
for (int j = 0; j < n; j++) {
w[idx][j] = 3.14 * a[idx][1][j]* a[idx][1][j];
}
}
int main()
{
const int n = 3;
const int m = 4;
const int lda = m;
const int numMatrices = 3;
random_device device;
mt19937 generator(device());
uniform_real_distribution<double> distribution(1., 5.);
// create pointers
double*** A = new double** [numMatrices];
double** w = new double* [numMatrices];
//ALLOCATE SHARED MEMORY
for (int nm = 0; nm < numMatrices; nm++) {
A[nm] = new double* [lda];
w[nm] = new double[n];
for (int i = 0; i < lda; i++) {
A[nm][i] = new double[n];
for (int j = 0; j < n; j++) {
cudaMallocManaged((void**)&A[nm][i][j], sizeof(double));
cudaMallocManaged((void**)&w[nm][j], sizeof(double));
}
}
}
cout << " memory allocated" << endl;
//FILL MATRICES INTO SHARED MEMORY
for (int nm = 0; nm < numMatrices; nm++) {
A[nm] = new double* [lda];
w[nm] = new double[n];
for (int i = 0; i < lda; i++) {
A[nm][i] = new double[n];
for (int j = 0; j < n; j++) {
A[nm][i][j] = distribution(generator);
w[nm][j] = 0.0;
}
}
}
cout << " matrix filled " << endl;
// PRINT MATRICES BEFORE CUDA OPERATION
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < lda; i++) {
for (int j = 0; j < n; j++) {
cout << A[nm][i][j] << " ";
}
cout << endl;
}
cout << endl;
}
//KERNEL ----------------------------------------------------------------------
int NThreads = 3;
int NBlocks = int(numMatrices / NThreads + 1);
SVD << <NBlocks, NThreads >> > (A, n, m, numMatrices, w);
cudaDeviceSynchronize();
cout << " Kernel done " << endl << endl;
cout << " --- GPU --- " << endl;
cout << " NEW MATRIX: " << endl;
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < lda; i++) {
for (int j = 0; j < n; j++) {
cout << A[nm][i][j] << " ";
}
cout << endl;
}
cout << endl;
}
cout << " NEW VECTOR RESULTS: " << endl;
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < n; i++) {
cout << w[nm][i] << " ";
}
cout << endl;
}
cout << endl;
//FREE THE DEVICE'S MEMORY -----------------------------------------------------
cudaFree(A);
cudaFree(w);
cout << " Cuda free " << endl << endl;
return 0;
}
The (wrong) output I get is the following:
memory allocated
matrix filled
1.28689 3.76588 3.88649
1.52547 4.42371 2.62566
1.48002 3.33719 1.58413
3.78243 2.8394 3.0249
1.14322 1.70261 2.02784
2.86852 2.87918 3.2896
4.87268 3.52447 1.58414
3.52306 3.84931 3.18212
1.76397 1.41317 4.9765
1.63338 4.79316 2.64009
1.99873 1.72617 1.15974
1.18922 4.21513 1.6695
Kernel done
--- GPU ---
NEW MATRIX:
1.28689 3.76588 3.88649
1.52547 4.42371 2.62566
1.48002 3.33719 1.58413
3.78243 2.8394 3.0249
1.14322 1.70261 2.02784
2.86852 2.87918 3.2896
4.87268 3.52447 1.58414
3.52306 3.84931 3.18212
1.76397 1.41317 4.9765
1.63338 4.79316 2.64009
1.99873 1.72617 1.15974
1.18922 4.21513 1.6695
NEW VECTOR RESULTS:
0 0 0
0 0 0
0 0 0
Cuda free
I expected to se the new matrices and the vectors modified by the operations of: a[idx][i][j] = (a[idx][i][j] * a[idx][i][j]) * 3.14; however, It looks like the code does not see the kernel or the kernel does not work properly.
You had a several issues:
n, m were backwards)..cu file, not a .cpp file.The following code has the above issues addressed, and seems to run without runtime error.
$ cat t61.cu
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <assert.h>
#include <chrono>
#include <random>
#include <time.h>
#include <math.h>
using namespace std;
__global__ void SVD(double*** a, const int m, const int n, const int numMatrices, double** w)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < numMatrices){
// I would like that each thread runs these loops independently
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
a[idx][i][j] = (a[idx][i][j] * a[idx][i][j]) * 3.14;
}
}
for (int j = 0; j < n; j++) {
w[idx][j] = 3.14 * a[idx][1][j]* a[idx][1][j];
}
}
}
int main()
{
const int n = 3;
const int m = 4;
const int lda = m;
const int numMatrices = 3;
random_device device;
mt19937 generator(device());
uniform_real_distribution<double> distribution(1., 5.);
// create pointers
double*** A;
cudaMallocManaged(&A, sizeof(double**)*numMatrices);
double** w;
cudaMallocManaged(&w, sizeof(double*)* numMatrices);
//ALLOCATE SHARED MEMORY
for (int nm = 0; nm < numMatrices; nm++) {
cudaMallocManaged(&(A[nm]), sizeof(double*)*lda);
cudaMallocManaged(&(w[nm]), sizeof(double)*n);
for (int i = 0; i < lda; i++) {
cudaMallocManaged(&(A[nm][i]), sizeof(double)*n);
}
}
cout << " memory allocated" << endl;
//FILL MATRICES INTO SHARED MEMORY
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < lda; i++) {
for (int j = 0; j < n; j++) {
A[nm][i][j] = distribution(generator);
w[nm][j] = 0.0;
}
}
}
cout << " matrix filled " << endl;
// PRINT MATRICES BEFORE CUDA OPERATION
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < lda; i++) {
for (int j = 0; j < n; j++) {
cout << A[nm][i][j] << " ";
}
cout << endl;
}
cout << endl;
}
//KERNEL ----------------------------------------------------------------------
int NThreads = 3;
int NBlocks = int(numMatrices / NThreads + 1);
SVD << <NBlocks, NThreads >> > (A, m, n, numMatrices, w);
cudaDeviceSynchronize();
cout << " Kernel done " << endl << endl;
cout << " --- GPU --- " << endl;
cout << " NEW MATRIX: " << endl;
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < lda; i++) {
for (int j = 0; j < n; j++) {
cout << A[nm][i][j] << " ";
}
cout << endl;
}
cout << endl;
}
cout << " NEW VECTOR RESULTS: " << endl;
for (int nm = 0; nm < numMatrices; nm++) {
for (int i = 0; i < n; i++) {
cout << w[nm][i] << " ";
}
cout << endl;
}
cout << endl;
//FREE THE DEVICE'S MEMORY -----------------------------------------------------
cudaFree(A);
cudaFree(w);
cout << " Cuda free " << endl << endl;
return 0;
}
$ nvcc -o t61 t61.cu
$ cuda-memcheck ./t61
========= CUDA-MEMCHECK
memory allocated
matrix filled
3.73406 3.51919 3.249
1.52374 2.678 2.50944
3.67358 1.15831 3.26327
2.58468 1.49937 2.67133
1.72144 2.99183 3.11156
1.06247 3.34983 4.23568
3.49749 3.07641 3.42827
4.09607 2.00557 2.12049
3.65427 3.98966 4.73428
1.68397 4.3746 2.95533
2.1914 4.96086 1.7165
3.10095 2.61781 4.52626
Kernel done
--- GPU ---
NEW MATRIX:
43.7816 38.888 33.1458
7.29041 22.5191 19.7735
42.375 4.2129 33.4376
20.977 7.05908 22.407
9.30494 28.1062 30.4008
3.54453 35.2351 56.3348
38.41 29.7179 36.9045
52.6821 12.6301 14.1189
41.9306 49.9807 70.3782
8.90432 60.0905 27.4247
15.079 77.2757 9.25165
30.1939 21.5182 64.3294
NEW VECTOR RESULTS:
166.891 1592.32 1227.71
39.4501 3898.35 9965.14
248.961 11338.1 2361.64
Cuda free
========= ERROR SUMMARY: 0 errors
$
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With