I'm trying to convert from returns to a price index to simulate close prices for the ffn library, but without success.
import pandas as pd
times = pd.to_datetime(pd.Series(['2014-07-4',
'2014-07-15','2014-08-25','2014-08-25','2014-09-10','2014-09-15']))
strategypercentage = [0.01, 0.02, -0.03, 0.04,0.5,-0.3]
df = pd.DataFrame({'llt_return': strategypercentage}, index=times)
df['llt_close']=1
df['llt_close']=df['llt_close'].shift(1)*(1+df['llt_return'])
df.head(10)
llt_return llt_close
2014-07-04 0.01 NaN
2014-07-15 0.02 1.02
2014-08-25 -0.03 0.97
2014-08-25 0.04 1.04
2014-09-10 0.50 1.50
2014-09-15 -0.30 0.70
How can I make this correct?
You can use the cumulative product of return-relatives.
A return-relative is one-plus that day's return.
>>> start = 1.0
>>> df['llt_close'] = start * (1 + df['llt_return']).cumprod()
>>> df
llt_return llt_close
2014-07-04 0.01 1.0100
2014-07-15 0.02 1.0302
2014-08-25 -0.03 0.9993
2014-08-25 0.04 1.0393
2014-09-10 0.50 1.5589
2014-09-15 -0.30 1.0912
This assumes the price index starts at start
on the close of the trading day prior to 2014-07-04.
On 7-04, you have a 1% return and the price index closes at 1 * (1 + .01) = 1.01.
On 7-15, return was 2%; close price will be 1.01 * (1 + .02) = 1.0302.
Granted, this is not completely realistic given you're forming a price indexing from irregular-frequency data (missing dates), but hopefully this answers your question.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With