This code:
{-# LANGUAGE BangPatterns #-}
module Main where
import Data.Bits
import Data.Word
import Control.Monad
import System.CPUTime
import Data.List
-- The Damenproblem.
-- Wiki: https://de.wikipedia.org/wiki/Damenproblem
main :: IO ()
main = do
start <- getCPUTime
print $ dame 14
end <- getCPUTime
print $ "Needed " ++ (show ((fromIntegral (end - start)) / (10^12))) ++ " Seconds"
type BitState = (Word64, Word64, Word64)
dame :: Int -> Int
dame max = foldl' (+) 0 $ map fn row
where fn x = recur (max - 2) $ nextState (x, x, x)
recur !depth !state = foldl' (+) 0 $ flip map row $ getPossible depth (getStateVal state) state
getPossible depth !stateVal state bit
| (bit .&. stateVal) > 0 = 0
| depth == 0 = 1
| otherwise = recur (depth - 1) (nextState (addBitToState bit state))
row = take max $ iterate moveLeft 1
getStateVal :: BitState -> Word64
getStateVal (l, r, c) = l .|. r .|. c
addBitToState :: Word64 -> BitState -> BitState
addBitToState l (ol, or, oc) = (ol .|. l, or .|. l, oc .|. l)
nextState :: BitState -> BitState
nextState (l, r, c) = (moveLeft l, moveRight r, c)
moveRight :: Word64 -> Word64
moveRight x = shiftR x 1
moveLeft :: Word64 -> Word64
moveLeft x = shift x 1
needs about 60 seconds to execute. If i enable compiler optimisation with -O2, it takes about 7 seconds. -O1 is faster and takes about 5 seconds.
Tested a java version of this code, with for-loops in place of mapped lists, it takes about 1s (!). Been trying my hardest to optimize yet none of the tips i found online helped more than half a second. Please help
Edit: Java version:
public class Queens{
static int getQueens(){
int res = 0;
for (int i = 0; i < N; i++) {
int pos = 1 << i;
res += run(pos << 1, pos >> 1, pos, N - 2);
}
return res;
}
static int run(long diagR, long diagL, long mid, int depth) {
long valid = mid | diagL | diagR;
int resBuffer = 0;
for (int i = 0; i < N; i++) {
int pos = 1 << i;
if ((valid & pos) > 0) {
continue;
}
if (depth == 0) {
resBuffer++;
continue;
}
long n_mid = mid | pos;
long n_diagL = (diagL >> 1) | (pos >> 1);
long n_diagR = (diagR << 1) | (pos << 1);
resBuffer += run(n_diagR, n_diagL, n_mid, depth - 1);
}
return resBuffer;
}
}
Edit: Running on windows with ghc 8.4.1 on an i5 650 with 3.2GHz.
Assuming your algorithm is correct (I haven't verified this), I was able to get consistently 900ms (faster than the Java implementation!). -O2 and -O3 were both comparable on my machine.
Notable changes: (EDIT: Most important change: switch from List to Vector) Switched to GHC 8.4.1, used strictness liberally, BitState is now a strict 3-tuple
Using Vectors is important to achieve better speed - in my opinion you can't achieve comparable speed with just linked lists, even with fusion. The Unboxed Vector is important because you know the Vector will always be of Word64s or Ints.
{-# LANGUAGE BangPatterns #-}
module Main (main) where
import Data.Bits ((.&.), (.|.), shiftR, shift)
import Data.Vector.Unboxed (Vector)
import qualified Data.Vector.Unboxed as Vector
import Data.Word (Word64)
import Prelude hiding (max, sum)
import System.CPUTime (getCPUTime)
--
-- The Damenproblem.
-- Wiki: https://de.wikipedia.org/wiki/Damenproblem
main :: IO ()
main = do
start <- getCPUTime
print $ dame 14
end <- getCPUTime
print $ "Needed " ++ (show ((fromIntegral (end - start)) / (10^12))) ++ " Seconds"
data BitState = BitState !Word64 !Word64 !Word64
bmap :: (Word64 -> Word64) -> BitState -> BitState
bmap f (BitState x y z) = BitState (f x) (f y) (f z)
{-# INLINE bmap #-}
bfold :: (Word64 -> Word64 -> Word64) -> BitState -> Word64
bfold f (BitState x y z) = x `f` y `f` z
{-# INLINE bfold #-}
singleton :: Word64 -> BitState
singleton !x = BitState x x x
{-# INLINE singleton #-}
dame :: Int -> Int
dame !x = sumWith fn row
where
fn !x' = recur (x - 2) $ nextState $ singleton x'
getPossible !depth !stateVal !state !bit
| (bit .&. stateVal) > 0 = 0
| depth == 0 = 1
| otherwise = recur (depth - 1) (nextState (addBitToState bit state))
recur !depth !state = sumWith (getPossible depth (getStateVal state) state) row
!row = Vector.iterateN x moveLeft 1
sumWith :: (Vector.Unbox a, Vector.Unbox b, Num b) => (a -> b) -> Vector a -> b
sumWith f as = Vector.sum $ Vector.map f as
{-# INLINE sumWith #-}
getStateVal :: BitState -> Word64
getStateVal !b = bfold (.|.) b
addBitToState :: Word64 -> BitState -> BitState
addBitToState !l !b = bmap (.|. l) b
nextState :: BitState -> BitState
nextState !(BitState l r c) = BitState (moveLeft l) (moveRight r) c
moveRight :: Word64 -> Word64
moveRight !x = shiftR x 1
{-# INLINE moveRight #-}
moveLeft :: Word64 -> Word64
moveLeft !x = shift x 1
{-# INLINE moveLeft #-}
I checked the core with ghc dame.hs -O2 -fforce-recomp -ddump-simpl -dsuppress-all, and it looked pretty good (i.e. everything unboxed, loops looked good). I was concerned that the partial application of getPossible might be a problem, but it turned out to not be. I feel like if I understood the algorithm better it might be possible to write in a better/more efficient way, however I'm not too concerned - this still manages to beat the Java implementation.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With