currently I'm working on a project where I try to find the corners of the rectangle's surface in a photo using OpenCV (Python, Java or C++)
I've selected desired surface by filtering color, then I've got mask and passed it to the cv2.findContours:
cnts, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnt = sorted(cnts, key = cv2.contourArea, reverse = True)[0]
peri = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, 0.02*peri, True)
if len(approx) == 4:
cv2.drawContours(mask, [approx], -1, (255, 0, 0), 2)
This gives me an inaccurate result:

Using cv2.HoughLines I've managed to get 4 straight lines that accurately describe the surface. Their intersections are exactly what I need:
edged = cv2.Canny(mask, 10, 200)
hLines = cv2.HoughLines(edged, 2, np.pi/180, 200)
lines = []
for rho,theta in hLines[0]:
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
cv2.line(mask, (x1,y1), (x2,y2), (255, 0, 0), 2)
lines.append([[x1,y1],[x2,y2]])

The question is: is it possible to somehow tweak findContours?
Another solution would be to find coordinates of intersections. Any clues for this approach are welcome :)
Can anybody give me a hint how to solve this problem?
Finding intersection is not so trivial problem as it seems to be, but before the intersection points will be found, following problems should be considered:
cv2.HoughLines will return an array with the values of rho and theta for each line.
Now the problem becomes a system of equations for all lines in pairs:

def intersections(edged):
# Height and width of a photo with a contour obtained by Canny
h, w = edged.shape
hl = cv2.HoughLines(edged,2,np.pi/180,190)[0]
# Number of lines. If n!=4, the parameters should be tuned
n = hl.shape[0]
# Matrix with the values of cos(theta) and sin(theta) for each line
T = np.zeros((n,2),dtype=np.float32)
# Vector with values of rho
R = np.zeros((n),dtype=np.float32)
T[:,0] = np.cos(hl[:,1])
T[:,1] = np.sin(hl[:,1])
R = hl[:,0]
# Number of combinations of all lines
c = n*(n-1)/2
# Matrix with the obtained intersections (x, y)
XY = np.zeros((c,2))
# Finding intersections between all lines
for i in range(n):
for j in range(i+1, n):
XY[i+j-1, :] = np.linalg.inv(T[[i,j],:]).dot(R[[i,j]])
# filtering out the coordinates outside the photo
XY = XY[(XY[:,0] > 0) & (XY[:,0] <= w) & (XY[:,1] > 0) & (XY[:,1] <= h)]
# XY = order_points(XY) # obtained points should be sorted
return XY
here is the result:

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With