Here is MWE:
library(pscl)
data("bioChemists", package = "pscl")
fm_pois <- glm(art ~ ., data = bioChemists, family = poisson)
fm_qpois <- glm(art ~ ., data = bioChemists, family = quasipoisson)
fm_nb <- glm.nb(art ~ ., data = bioChemists)
fm_zinb <- zeroinfl(art ~ . | 1, data = bioChemists, dist = "negbin")
library(stargazer)
stargazer(
fm_pois, fm_qpois, fm_nb, fm_zinb
, type = "text"
)
=============================================================================
Dependent variable:
-----------------------------------------------------------
art
Poisson glm: quasipoisson negative zero-inflated
link = log binomial count data
(1) (2) (3) (4)
-----------------------------------------------------------------------------
femWomen -0.225*** -0.225*** -0.216*** -0.216***
(0.055) (0.074) (0.073) (0.073)
marMarried 0.155** 0.155* 0.150* 0.150*
(0.061) (0.083) (0.082) (0.082)
kid5 -0.185*** -0.185*** -0.176*** -0.176***
(0.040) (0.054) (0.053) (0.053)
phd 0.013 0.013 0.015 0.015
(0.026) (0.036) (0.036) (0.036)
ment 0.026*** 0.026*** 0.029*** 0.029***
(0.002) (0.003) (0.003) (0.003)
Constant 0.305*** 0.305** 0.256* 0.256*
(0.103) (0.139) (0.137) (0.139)
-----------------------------------------------------------------------------
Observations 915 915 915 915
Log Likelihood -1,651.056 -1,561.958 -1,560.959
theta 2.264*** (0.271)
Akaike Inf. Crit. 3,314.113 3,135.917
=============================================================================
Note: *p<0.1; **p<0.05; ***p<0.01
I'm looking for multicolumn output like this:
=============================================================================
Dependent variable:
-----------------------------------------------------------
art
Poisson Negative Binomial
Poisson QuasiPoisson NB ZINB
(1) (2) (3) (4)
-----------------------------------------------------------------------------
femWomen -0.225*** -0.225*** -0.216*** -0.216***
(0.055) (0.074) (0.073) (0.073)
marMarried 0.155** 0.155* 0.150* 0.150*
(0.061) (0.083) (0.082) (0.082)
kid5 -0.185*** -0.185*** -0.176*** -0.176***
(0.040) (0.054) (0.053) (0.053)
phd 0.013 0.013 0.015 0.015
(0.026) (0.036) (0.036) (0.036)
ment 0.026*** 0.026*** 0.029*** 0.029***
(0.002) (0.003) (0.003) (0.003)
Constant 0.305*** 0.305** 0.256* 0.256*
(0.103) (0.139) (0.137) (0.139)
-----------------------------------------------------------------------------
Observations 915 915 915 915
Log Likelihood -1,651.056 -1,561.958 -1,560.959
theta 2.264*** (0.271)
Akaike Inf. Crit. 3,314.113 3,135.917
=============================================================================
Note: *p<0.1; **p<0.05; ***p<0.01
Poisson for first two columns and Negative Binomial for next two columns.Poisson, Quasi Poisson, Negative Binomial and Zero Inflated Negative Binomial.I found this link but could not figured out how to get this one.
Like Nick Kennedy I do not think that stargazer can produce your desired output directly.
Therefore, here a workaround: Save the stargazer table in an object and add the desired lines manually.
I hardcoded this here; with some more effort it should be possible to center the text above the respective columns automatically.
Note that I slightly changed your stargazer call in order to hide the (wrong) model names.
library(pscl)
library(stargazer)
data("bioChemists", package = "pscl")
fm_pois <- glm(art ~ ., data = bioChemists, family = poisson)
fm_qpois <- glm(art ~ ., data = bioChemists, family = quasipoisson)
fm_nb <- glm.nb(art ~ ., data = bioChemists)
fm_zinb <- zeroinfl(art ~ . | 1, data = bioChemists, dist = "negbin")
byLine <-
do.call("c",
strsplit(
capture.output(
stargazer(fm_pois, fm_qpois, fm_nb, fm_zinb,
type = "text", model.names = FALSE)
),
"\n"))
result <- append(
byLine,
c(
" Poisson Negative Binomial",
"",
" Poisson QuasiPoisson NB ZINB"
),
after = c(4, 5, 6))
cat(paste(result, collapse = "\n"))
# ==================================================================
# Dependent variable:
# ------------------------------------------------
# art
# Poisson Negative Binomial
#
# Poisson QuasiPoisson NB ZINB
# (1) (2) (3) (4)
# ------------------------------------------------------------------
# femWomen -0.225*** -0.225*** -0.216*** -0.216***
# (0.055) (0.074) (0.073) (0.073)
#
# marMarried 0.155** 0.155* 0.150* 0.150*
# (0.061) (0.083) (0.082) (0.082)
#
# kid5 -0.185*** -0.185*** -0.176*** -0.176***
# (0.040) (0.054) (0.053) (0.053)
#
# phd 0.013 0.013 0.015 0.015
# (0.026) (0.036) (0.036) (0.036)
#
# ment 0.026*** 0.026*** 0.029*** 0.029***
# (0.002) (0.003) (0.003) (0.003)
#
# Constant 0.305*** 0.305** 0.256* 0.256*
# (0.103) (0.139) (0.137) (0.139)
#
# ------------------------------------------------------------------
# Observations 915 915 915 915
# Log Likelihood -1,651.056 -1,561.958 -1,560.959
# theta 2.264*** (0.271)
# Akaike Inf. Crit. 3,314.113 3,135.917
# ==================================================================
# Note: *p<0.1; **p<0.05; ***p<0.01
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With