The first issue here is a bug in 0.12, but was fixed in 0.13.0rc1. The second issue here is not fixed though and is at least an inconsistency.
These two scenarios work fine:
a = DataFrame(np.zeros((2, 2), dtype=float),columns=[['a', 'B'],[1, 2]])
b = DataFrame(np.zeros((2, 2), dtype=float),columns=[['a', 'B']])
b[['a']]=a[['a']]
and
a = DataFrame(np.zeros((2, 2), dtype=float),columns=[['a', 'b'],[1, 2]])
b = DataFrame(np.zeros((2, 2), dtype=float),columns=[['a', 'b'],[1, 2]])
b[['a']]=a[['a']]
However,
a = DataFrame(np.zeros((2, 2), dtype=float),columns=[['a', 'B'],[1, 2]])
b = DataFrame(np.zeros((2, 2), dtype=float),columns=[['a', 'B'],[1, 2]])
b[['a']]=a[['a']]
generates an AttributeError: _ref_locs
Similar situation with:
b = DataFrame(np.zeros((2, 2)),columns=[['a', 'c'],[1,2]])
b.drop('a', axis=1)
works fine, but
b = DataFrame(np.zeros((2, 2)),columns=[['a', 'C'],[1,2]])
b.drop('a', axis=1)
gives AttributeError: 'FrozenNDArray' object has no attribute 'start'
Since you didn't specify, you are probably using pandas <= 0.12
This works in 0.13rc1 (final release coming soon), and was a bug in 0.12
You example from above (using positional references for clarity)
In [3]: a = DataFrame(np.arange(0,4).reshape((2,2)),columns=[['a', 'B'],[1, 2]])
In [4]: b = DataFrame(np.arange(4,8).reshape((2,2)),columns=[['a', 'B'],[1, 2]])
In [5]: a
Out[5]:
a B
1 2
0 0 1
1 2 3
[2 rows x 2 columns]
In [6]: b
Out[6]:
a B
1 2
0 4 5
1 6 7
[2 rows x 2 columns]
In [7]: b[['a']] = a[['a']]
In [8]: b
Out[8]:
a B
1 2
0 0 5
1 2 7
[2 rows x 2 columns]
The second part is not a bug; rather you are not specifying the label fully (you are only specifying a single-level), instead you need to specify the complete label (via a tuple):
In [12]: b = DataFrame(np.zeros((2, 2)),columns=[['a', 'C'],[1,2]])
In [13]: b.drop([('a',1)],axis=1)
Out[13]:
C
2
0 0
1 0
[2 rows x 1 columns]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With