My Metropolis-Hastings problem has a stationary binomial distribution, and all proposal distributions q(i,j) are 0.5. With reference to the plot and histogram, should the algorithm be so clearly centered around 0.5, the probability from the binomial distribution?
pi <- function(x, n, p){
# returning value from binomial distribution
result <- (factorial(n) / (factorial(x) * factorial(n - x))) *
p^x * (1 - p)^(n - x)
return(result)
}
metropolisAlgorithm <- function(n, p, T){
# implementation of the algorithm
# @n,p binomial parameters
# @T number of time steps
X <- rep(runif(1),T)
for (t in 2:T) {
Y <- runif(1)
alpha <- pi(X[t - 1], n, p) / pi(Y, n, p)
if (runif(1) < alpha) X[t] <- Y
else X[t] < X[t - 1]
}
return(X)
}
# calling M-H algorithm and plotting result
test <- metropolisAlgorithm(40,0.5,5000)
par(mfrow=c(2,1))
plot(test, type = "l")
hist(test, breaks = 40)
You had 3 issues:
1) You seem to want to simulate a binomial distribution, so your random walk should be over integers in the range 1:n
rather than real numbers in the range [0,1]
.
2) You had the numerator and the denominator switched in the computation of alpha
3) You had a typo in X[t] < X[t - 1]
.
Fixing these and cleaning up your code a bit (including using the dbinom
function as @ZheyuanLi suggested) yields:
metropolisAlgorithm <- function(n, p, T){
# implementation of the algorithm
# @n,p binomial parameters
# @T number of time steps
X <- rep(0,T)
X[1] <- sample(1:n,1)
for (t in 2:T) {
Y <- sample(1:n,1)
alpha <- dbinom(Y,n,p)/dbinom(X[t-1],n,p)
if (runif(1) < alpha){
X[t] <- Y
}else{
X[t] <- X[t - 1]}
}
return(X)
}
# calling M-H algorithm and plotting result
test <- metropolisAlgorithm(40,0.5,5000)
par(mfrow=c(2,1))
plot(test, type = "l")
hist(test) breaks = 40)
Typical output (which makes perfect sense):
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With