Merging two dataframe : I have two dataframes that need merging on some criteria but i havent been able to figure out how to do this?
df1 :
id positive_action date volume
id_1 user 1 2016-12-12 19720.735
user 2 2016-12-12 14740.800
df2 :
id negative_action date volume
id_1 user 1 2016-12-12 10.000
user 3 2016-12-12 10.000
I want :
id action date volume
id_1 user 1 2016-12-12 19730.735
user 2 2016-12-12 14740.800
user 3 2016-12-12 10.000
Here
How do i achieve this?
You can also concatenate your DataFrames after renaming the positive_action and negative_action columns to just action and then perform a groupby.
df1.rename(columns={'positive_action':'action'}, inplace=True)
df2.rename(columns={'negative_action':'action'}, inplace=True)
pd.concat([df1, df2]).groupby(['id', 'action', 'date']).sum().reset_index()
id action date volume
0 id_1 user 1 2016-12-12 19730.735
1 id_1 user 2 2016-12-12 14740.800
2 id_1 user 3 2016-12-12 10.000
This should work:
# not sure what indexing you are using so lets remove it
# to get on the same page, so to speak ;).
df1 = df1.reset_index()
df2 = df2.reset_index()
# do an outer merge to allow mismatches on the actions.
df = df1.merge(
df2, left_on=['id', 'positive_action', 'date'],
right_on=['id', 'negative_action', 'date'],
how='outer',
)
# fill the missing actions from one with the other.
# (Will only happen when one is missing due to the way we merged.)
df['action'] = df['positive_action'].fillna(df['negative_action'])
# drop the old actions
df = df.drop('positive_action', 1)
df = df.drop('negative_action', 1)
# aggregate the volumes (I'm assuming you mean a simple sum)
df['volume'] = df['volume_x'].fillna(0) + df['volume_y'].fillna(0)
# drop the old volumes
df = df.drop('volume_x', 1)
df = df.drop('volume_y', 1)
print(df)
The output is:
id date volume action
0 id_1 2016-12-12 19730.735 user_1
1 id_1 2016-12-12 14740.800 user_2
2 id_1 2016-12-12 10.000 user_3
You can then restore the indexing I may have removed.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With