Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Merge Pandas Multiindexed DataFrame with Singleindexed Pandas DataFrame

I would like to join two DataFrames. The first one is a multi indexed DataFrame and the second is a simple DataFrame.

import pandas as pd
import numpy
a = pd.DataFrame({'a': {('x', 0) : 1, ('x', 1) : 2, ('y', 0): 3, ('y', 1): 5}, 'b': {('x', 0) : 2, ('x', 1) : 4, ('y', 0): 2, ('y', 1): 7}}).T
print(a)

#    x     y
#    0  1  0  1
# a  1  2  3  5
# b  2  4  2  7

b = pd.DataFrame({'y': np.arange(10), 'z': np.arange(10, 20)})

magical_merge(left=a, right=b, on='y')

#    x     y     z
#    0  1  0  1  0  1 
# a  1  2  3  5 13 15
# b  2  4  2  7 12 17

Right now I am doing this with a loop over the second index like this:

merged = []
for l in [0, 1]:
   m = pd.merge(left=a.xs(l, axis=1, level=1),right=b, on='y')
   m_indices = pd.MultiIndex.from_product([m.columns, [l]])
   m.columns = m_indices
   merged.append(m)

result = pd.concat(merged, axis=1).sort_index(axis=1)

Can pandas do this somehow by itself?

like image 671
Spark Monkay Avatar asked Jan 25 '26 22:01

Spark Monkay


1 Answers

You need stack and reset_index on the multiindex df (which is a in your case). Next, merge and set_index back. Finally, use rename_axis to pretty the multiindex names and unstack to put back multiindex columns:

a.stack().reset_index().merge(b, on='y').set_index(['level_0', 'level_1']) \
                       .rename_axis(index=[None, None]).unstack()

Out[335]:
   x     y      z
   0  1  0  1   0   1
a  1  2  3  5  13  15
b  2  4  2  7  12  17
like image 188
Andy L. Avatar answered Jan 27 '26 11:01

Andy L.



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!