I achieved to calculate factorial with two threads without the pool. I have two factorial classes which are named Factorial1, Factorial2 and extends Thread class. Let's consider I want to calculate the value of !160000. In Factorial1's run() method I do the multiplication in a for loop from i=2 to i=80000 and in Factorial2's from i=80001 to 160000. After that, i return both values and multiply them in the main method. When I compare the execution time it's much better (which is 5000 milliseconds) than the non-thread calculation's time (15000 milliseconds) even with two threads.
Now I want to write clean and better code because I saw the efficiency of threads at factorial calculation but when I use a thread pool to calculate the factorial value, the parallel calculation always takes more time than the non-thread calculation (nearly 16000). My code pieces look like:
for(int i=2; i<= Calculate; i++)
{
myPool.execute(new Multiplication(result, i));
}
run() method which is in Multiplication class:
public void run()
{
s1.Mltply(s2); // s1 and s2 are instances of my Number class
// their fields holds BigInteger values
}
Mltply() method which is in Number class:
public void Multiply(int number)
{
area.lock(); // result is going wrong without lock
Number temp = new Number(number);
value = value.multiply(temp.value); // value is a BigInteger
area.unlock();
}
In my opinion this lock may kills the all advantage of the thread usage because it seems like all that threads do is multiplication but nothing else. But without it, i can't even calculate the true result. Let's say i want to calculate !10, so thread1 calculates the 10*9*8*7*6 and thread2 calculate the 5*4*3*2*1. Is that the way I'm looking for? Is it even possible with thread pool? Of course execution time must be less than the normal calculation...
I appreciate all your help and suggestion.
EDIT: - My own solution to the problem -
public class MyMultiplication implements Runnable
{
public static BigInteger subResult1;
public static BigInteger subResult2;
int thread1StopsAt;
int thread2StopsAt;
long threadId;
static boolean idIsSet=false;
public MyMultiplication(BigInteger n1, int n2) // First Thread
{
MyMultiplication.subResult1 = n1;
this.thread1StopsAt = n2/2;
thread2StopsAt = n2;
}
public MyMultiplication(int n2,BigInteger n1) // Second Thread
{
MyMultiplication.subResult2 = n1;
this.thread2StopsAt = n2;
thread1StopsAt = n2/2;
}
@Override
public void run()
{
if(idIsSet==false)
{
threadId = Thread.currentThread().getId();
idIsSet=true;
}
if(Thread.currentThread().getId() == threadId)
{
for(int i=2; i<=thread1StopsAt; i++)
{
subResult1 = subResult1.multiply(BigInteger.valueOf(i));
}
}
else
{
for(int i=thread1StopsAt+1; i<= thread2StopsAt; i++)
{
subResult2 = subResult2.multiply(BigInteger.valueOf(i));
}
}
}
}
public class JavaApplication3
{
public static void main(String[] args) throws InterruptedException
{
int calculate=160000;
long start = System.nanoTime();
BigInteger num = BigInteger.valueOf(1);
for (int i = 2; i <= calculate; i++)
{
num = num.multiply(BigInteger.valueOf(i));
}
long end = System.nanoTime();
double time = (end-start)/1000000.0;
System.out.println("Without threads: \t" +
String.format("%.2f",time) + " miliseconds");
System.out.println("without threads Result: " + num);
BigInteger num1 = BigInteger.valueOf(1);
BigInteger num2 = BigInteger.valueOf(1);
ExecutorService myPool = Executors.newFixedThreadPool(2);
start = System.nanoTime();
myPool.execute(new MyMultiplication(num1,calculate));
Thread.sleep(100);
myPool.execute(new MyMultiplication(calculate,num2));
myPool.shutdown();
while(!myPool.isTerminated()) {} // waiting threads to end
end = System.nanoTime();
time = (end-start)/1000000.0;
System.out.println("With threads: \t" +String.format("%.2f",time)
+ " miliseconds");
BigInteger result =
MyMultiplication.subResult1.
multiply(MyMultiplication.subResult2);
System.out.println("With threads Result: " + result);
System.out.println(MyMultiplication.subResult1);
System.out.println(MyMultiplication.subResult2);
}
}
input : !160000 Execution time without threads : 15000 milliseconds Execution time with 2 threads : 4500 milliseconds
Thanks for ideas and suggestions.
You may calculate !160000 concurrently without using a lock by splitting 160000 into disjunct junks as you explaint by splitting it into 2..80000 and 80001..160000.
But you may achieve this by using the Java Stream API:
IntStream.rangeClosed(1, 160000).parallel()
.mapToObj(val -> BigInteger.valueOf(val))
.reduce(BigInteger.ONE, BigInteger::multiply);
It does exactly what you try to do. It splits the whole range into junks, establishes a thread pool and computes the partial results. Afterwards it joins the partial results into a single result.
So why do you bother doing it by yourself? Just practicing clean coding?
On my real 4 core machine computation in a for loop took 8 times longer than using a parallel stream.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With