Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Iterating without for loop in numpy array

I need to do logical iteration over numpy array, which's values depend on elements of other array. I've written code below for clarifying my problem. Any suggestions to solve this problem without for loop?

Code
a = np.array(['a', 'b', 'a', 'a', 'b', 'a'])
b = np.array([150, 154, 147, 126, 148, 125])
c = np.zeros_like(b)
c[0] = 150
for i in range(1, c.size):
    if a[i] == "b":
        c[i] = c[i-1]
    else:
        c[i] = b[i]
like image 670
Elgin Cahangirov Avatar asked Oct 17 '25 16:10

Elgin Cahangirov


2 Answers

Here's an approach using a combination of np.maximum.accumulate and np.where to create stepped indices that are to be stopped at certain intervals and then simply indexing into b would give us the desired output.

Thus, an implementation would be -

mask = a!="b"
idx = np.maximum.accumulate(np.where(mask,np.arange(mask.size),0))
out = b[idx]

Sample step-by-step run -

In [656]: # Inputs 
     ...: a = np.array(['a', 'b', 'a', 'a', 'b', 'a'])
     ...: b = np.array([150, 154, 147, 126, 148, 125])
     ...: 

In [657]: mask = a!="b"

In [658]: mask
Out[658]: array([ True, False,  True,  True, False,  True], dtype=bool)

# Crux of the implmentation happens here :
In [696]: np.where(mask,np.arange(mask.size),0)
Out[696]: array([0, 0, 2, 3, 0, 5])

In [697]: np.maximum.accumulate(np.where(mask,np.arange(mask.size),0))
Out[697]: array([0, 0, 2, 3, 3, 5])# Stepped indices "intervaled" at masked places

In [698]: idx = np.maximum.accumulate(np.where(mask,np.arange(mask.size),0))

In [699]: b[idx]
Out[699]: array([150, 150, 147, 126, 126, 125])
like image 61
Divakar Avatar answered Oct 19 '25 05:10

Divakar


You could use a more vectorized approach Like so:

np.where(a == "b", np.roll(c, 1), b)

np.where will take the elements from np.roll(c, 1) if the condition is True or it will take from b if the condition is False. np.roll(c, 1) will "roll" forward all the elements of c by 1 so that each element refers to c[i-1].

These type of operations are what make numpy so invaluable. Looping should be avoided if possible.

like image 25
pbreach Avatar answered Oct 19 '25 06:10

pbreach