I want to integrate OpenCV with YOLOv8 from ultralytics, so I want to obtain the bounding box coordinates from the model prediction. How do I do this?
from ultralytics import YOLO
import cv2
model = YOLO('yolov8n.pt')
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
while True:
_, frame = cap.read()
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = model.predict(img)
for r in results:
for c in r.boxes.cls:
print(model.names[int(c)])
cv2.imshow('YOLO V8 Detection', frame)
if cv2.waitKey(1) & 0xFF == ord(' '):
break
cap.release()
cv2.destroyAllWindows()
I want to display the YOLO annotated image in OpenCV. I know I can use the stream parameter in model.predict(source='0', show=True). But I want to continuously monitor the predicted class names for my program, at the same time displaying the image output.
This will:
from ultralytics import YOLO
import cv2
from ultralytics.utils.plotting import Annotator # ultralytics.yolo.utils.plotting is deprecated
model = YOLO('yolov8n.pt')
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
while True:
_, img = cap.read()
# BGR to RGB conversion is performed under the hood
# see: https://github.com/ultralytics/ultralytics/issues/2575
results = model.predict(img)
for r in results:
annotator = Annotator(img)
boxes = r.boxes
for box in boxes:
b = box.xyxy[0] # get box coordinates in (left, top, right, bottom) format
c = box.cls
annotator.box_label(b, model.names[int(c)])
img = annotator.result()
cv2.imshow('YOLO V8 Detection', img)
if cv2.waitKey(1) & 0xFF == ord(' '):
break
cap.release()
cv2.destroyAllWindows()
You can get all the information using the next code:
for result in results:
# detection
result.boxes.xyxy # box with xyxy format, (N, 4)
result.boxes.xywh # box with xywh format, (N, 4)
result.boxes.xyxyn # box with xyxy format but normalized, (N, 4)
result.boxes.xywhn # box with xywh format but normalized, (N, 4)
result.boxes.conf # confidence score, (N, 1)
result.boxes.cls # cls, (N, 1)
# segmentation
result.masks.masks # masks, (N, H, W)
result.masks.segments # bounding coordinates of masks, List[segment] * N
# classification
result.probs # cls prob, (num_class, )
you can read furthermore in the documentation.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With