I have an object column with values which are dates. I manually placed 2016-08-31 instead of NaN after reading from csv.
close_date
0 1948-06-01 00:00:00
1 2016-08-31 00:00:00
2 2016-08-31 00:00:00
3 1947-07-01 00:00:00
4 1967-05-31 00:00:00
Running df['close_date'] = pd.to_datetime(df['close_date'])
results in
TypeError: invalid string coercion to datetime
Adding coerce=True
argument results in:
TypeError: to_datetime() got an unexpected keyword argument 'coerce'
Furthermore, even though I call the column 'close_date', all the columns in the dataframe, some int64, float64, and datetime64[ns], change to dtype object.
What am I doing wrong?
You need errors='coerce'
parameter what convert some not parseable values to NaT
:
df['close_date'] = pd.to_datetime(df['close_date'], errors='coerce')
print (df)
close_date
0 1948-06-01
1 2016-08-31
2 2016-08-31
3 1947-07-01
4 1967-05-31
print (df['close_date'].dtypes)
datetime64[ns]
But if there are some mixed values - numeric with datetimes convert to str
first:
df['close_date'] = pd.to_datetime(df['close_date'].astype(str), errors='coerce')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With