Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

The method word_frequencies(List<List<Pair<String,String>>>) is not applicable for the arguments (ArrayList<ArrayList<Pair<String,String>>>) [duplicate]

I'm a bit confused about how Java generics handle inheritance / polymorphism.

Assume the following hierarchy -

Animal (Parent)

Dog - Cat (Children)

So suppose I have a method doSomething(List<Animal> animals). By all the rules of inheritance and polymorphism, I would assume that a List<Dog> is a List<Animal> and a List<Cat> is a List<Animal> - and so either one could be passed to this method. Not so. If I want to achieve this behavior, I have to explicitly tell the method to accept a list of any subclass of Animal by saying doSomething(List<? extends Animal> animals).

I understand that this is Java's behavior. My question is why? Why is polymorphism generally implicit, but when it comes to generics it must be specified?

like image 418
froadie Avatar asked Nov 23 '25 00:11

froadie


2 Answers

No, a List<Dog> is not a List<Animal>. Consider what you can do with a List<Animal> - you can add any animal to it... including a cat. Now, can you logically add a cat to a litter of puppies? Absolutely not.

// Illegal code - because otherwise life would be Bad
List<Dog> dogs = new ArrayList<Dog>(); // ArrayList implements List
List<Animal> animals = dogs; // Awooga awooga
animals.add(new Cat());
Dog dog = dogs.get(0); // This should be safe, right?

Suddenly you have a very confused cat.

Now, you can't add a Cat to a List<? extends Animal> because you don't know it's a List<Cat>. You can retrieve a value and know that it will be an Animal, but you can't add arbitrary animals. The reverse is true for List<? super Animal> - in that case you can add an Animal to it safely, but you don't know anything about what might be retrieved from it, because it could be a List<Object>.

like image 101
Jon Skeet Avatar answered Nov 25 '25 15:11

Jon Skeet


What you are looking for is called covariant type parameters. This means that if one type of object can be substituted for another in a method (for instance, Animal can be replaced with Dog), the same applies to expressions using those objects (so List<Animal> could be replaced with List<Dog>). The problem is that covariance is not safe for mutable lists in general. Suppose you have a List<Dog>, and it is being used as a List<Animal>. What happens when you try to add a Cat to this List<Animal> which is really a List<Dog>? Automatically allowing type parameters to be covariant breaks the type system.

It would be useful to add syntax to allow type parameters to be specified as covariant, which avoids the ? extends Foo in method declarations, but that does add additional complexity.

like image 26
Michael Ekstrand Avatar answered Nov 25 '25 15:11

Michael Ekstrand