I've found an interesting floating point problem. I have to calculate several square roots in my code, and the expression is like this:
sqrt(1.0 - pow(pos,2))
where pos goes from -1.0 to 1.0 in a loop. The -1.0 is fine for pow, but when pos=1.0, I get an -nan. Doing some tests, using gcc 4.4.5 and icc 12.0, the output of
1.0 - pow(pos,2) = -1.33226763e-15
and
1.0 - pow(1.0,2) = 0
or
poss = 1.0
1.0 - pow(poss,2) = 0
Where clearly the first one is going to give problems, being negative. Anyone knows why pow is returning a number smaller than 0? The full offending code is below:
int main() {
double n_max = 10;
double a = -1.0;
double b = 1.0;
int divisions = int(5 * n_max);
assert (!(b == a));
double interval = b - a;
double delta_theta = interval / divisions;
double delta_thetaover2 = delta_theta / 2.0;
double pos = a;
//for (int i = 0; i < divisions - 1; i++) {
for (int i = 0; i < divisions+1; i++) {
cout<<sqrt(1.0 - pow(pos, 2)) <<setw(20)<<pos<<endl;
if(isnan(sqrt(1.0 - pow(pos, 2)))){
cout<<"Danger Will Robinson!"<<endl;
cout<< sqrt(1.0 - pow(pos,2))<<endl;
cout<<"pos "<<setprecision(9)<<pos<<endl;
cout<<"pow(pos,2) "<<setprecision(9)<<pow(pos, 2)<<endl;
cout<<"delta_theta "<<delta_theta<<endl;
cout<<"1 - pow "<< 1.0 - pow(pos,2)<<endl;
double poss = 1.0;
cout<<"1- poss "<<1.0 - pow(poss,2)<<endl;
}
pos += delta_theta;
}
return 0;
}
When you keep incrementing pos in a loop, rounding errors accumulate and in your case the final value > 1.0. Instead of that, calculate pos by multiplication on each round to only get minimal amount of rounding error.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With