what is difference between spacy.load('en_core_web_sm') and spacy.load('en')? This link explains different model sizes. But i am still not clear how spacy.load('en_core_web_sm') and spacy.load('en') differ
spacy.load('en') runs fine for me. But the spacy.load('en_core_web_sm') throws error
i have installed spacyas below. when i go to jupyter notebook and run command nlp = spacy.load('en_core_web_sm') I get the below error
--------------------------------------------------------------------------- OSError Traceback (most recent call last) <ipython-input-4-b472bef03043> in <module>() 1 # Import spaCy and load the language library 2 import spacy ----> 3 nlp = spacy.load('en_core_web_sm') 4 5 # Create a Doc object C:\Users\nikhizzz\AppData\Local\conda\conda\envs\tensorflowspyder\lib\site-packages\spacy\__init__.py in load(name, **overrides) 13 if depr_path not in (True, False, None): 14 deprecation_warning(Warnings.W001.format(path=depr_path)) ---> 15 return util.load_model(name, **overrides) 16 17 C:\Users\nikhizzz\AppData\Local\conda\conda\envs\tensorflowspyder\lib\site-packages\spacy\util.py in load_model(name, **overrides) 117 elif hasattr(name, 'exists'): # Path or Path-like to model data 118 return load_model_from_path(name, **overrides) --> 119 raise IOError(Errors.E050.format(name=name)) 120 121 OSError: [E050] Can't find model 'en_core_web_sm'. It doesn't seem to be a shortcut link, a Python package or a valid path to a data directory. how I installed Spacy ---
(C:\Users\nikhizzz\AppData\Local\conda\conda\envs\tensorflowspyder) C:\Users\nikhizzz>conda install -c conda-forge spacy Fetching package metadata ............. Solving package specifications: . Package plan for installation in environment C:\Users\nikhizzz\AppData\Local\conda\conda\envs\tensorflowspyder: The following NEW packages will be INSTALLED: blas: 1.0-mkl cymem: 1.31.2-py35h6538335_0 conda-forge dill: 0.2.8.2-py35_0 conda-forge msgpack-numpy: 0.4.4.2-py_0 conda-forge murmurhash: 0.28.0-py35h6538335_1000 conda-forge plac: 0.9.6-py_1 conda-forge preshed: 1.0.0-py35h6538335_0 conda-forge pyreadline: 2.1-py35_1000 conda-forge regex: 2017.11.09-py35_0 conda-forge spacy: 2.0.12-py35h830ac7b_0 conda-forge termcolor: 1.1.0-py_2 conda-forge thinc: 6.10.3-py35h830ac7b_2 conda-forge tqdm: 4.29.1-py_0 conda-forge ujson: 1.35-py35hfa6e2cd_1001 conda-forge The following packages will be UPDATED: msgpack-python: 0.4.8-py35_0 --> 0.5.6-py35he980bc4_3 conda-forge The following packages will be DOWNGRADED: freetype: 2.7-vc14_2 conda-forge --> 2.5.5-vc14_2 Proceed ([y]/n)? y blas-1.0-mkl.t 100% |###############################| Time: 0:00:00 0.00 B/s cymem-1.31.2-p 100% |###############################| Time: 0:00:00 1.65 MB/s msgpack-python 100% |###############################| Time: 0:00:00 5.37 MB/s murmurhash-0.2 100% |###############################| Time: 0:00:00 1.49 MB/s plac-0.9.6-py_ 100% |###############################| Time: 0:00:00 0.00 B/s pyreadline-2.1 100% |###############################| Time: 0:00:00 4.62 MB/s regex-2017.11. 100% |###############################| Time: 0:00:00 3.31 MB/s termcolor-1.1. 100% |###############################| Time: 0:00:00 187.81 kB/s tqdm-4.29.1-py 100% |###############################| Time: 0:00:00 2.51 MB/s ujson-1.35-py3 100% |###############################| Time: 0:00:00 1.66 MB/s dill-0.2.8.2-p 100% |###############################| Time: 0:00:00 4.34 MB/s msgpack-numpy- 100% |###############################| Time: 0:00:00 0.00 B/s preshed-1.0.0- 100% |###############################| Time: 0:00:00 0.00 B/s thinc-6.10.3-p 100% |###############################| Time: 0:00:00 5.49 MB/s spacy-2.0.12-p 100% |###############################| Time: 0:00:10 7.42 MB/s (C:\Users\nikhizzz\AppData\Local\conda\conda\envs\tensorflowspyder) C:\Users\nikhizzz>python -V Python 3.5.3 :: Anaconda custom (64-bit) (C:\Users\nikhizzz\AppData\Local\conda\conda\envs\tensorflowspyder) C:\Users\nikhizzz>python -m spacy download en Collecting en_core_web_sm==2.0.0 from https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.0.0/en_core_web_sm-2.0.0.tar.gz#egg=en_core_web_sm==2.0.0 Downloading https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.0.0/en_core_web_sm-2.0.0.tar.gz (37.4MB) 100% |################################| 37.4MB ... Installing collected packages: en-core-web-sm Running setup.py install for en-core-web-sm ... done Successfully installed en-core-web-sm-2.0.0 Linking successful C:\Users\nikhizzz\AppData\Local\conda\conda\envs\tensorflowspyder\lib\site-packages\en_core_web_sm --> C:\Users\nikhizzz\AppData\Local\conda\conda\envs\tensorflowspyder\lib\site-packages\spacy\data\en You can now load the model via spacy.load('en') (C:\Users\nikhizzz\AppData\Local\conda\conda\envs\tensorflowspyder) C:\Users\nikhizzz>
It doesn't seem to be a shortcut link, a Python package or a valid path to a data directory Error You need to just download this packages using this command: python -m spacy download en_core_web_lg and python -m spacy download en_core_web_sm And then Run this command: python -m spacy download en and my error solved.
For example, en_core_web_sm is a small English pipeline trained on written web text (blogs, news, comments), that includes vocabulary, syntax and entities.
Initially I downloaded two en packages using following statements in anaconda prompt.
python -m spacy download en_core_web_lg python -m spacy download en_core_web_sm But, I kept on getting linkage error and finally running below command helped me to establish link and solved error.
python -m spacy download en Also make sure you to restart your runtime if working with Jupyter. -PS : If you get linkage error try giving admin previlages.
The answer to your misunderstanding is a Unix concept, softlinks which we could say that in Windows are similar to shortcuts. Let's explain this.
When you spacy download en, spaCy tries to find the best small model that matches your spaCy distribution. The small model that I am talking about defaults to en_core_web_sm which can be found in different variations which correspond to the different spaCy versions (for example spacy, spacy-nightly have en_core_web_sm of different sizes).
When spaCy finds the best model for you, it downloads it and then links the name en to the package it downloaded, e.g. en_core_web_sm. That basically means that whenever you refer to en you will be referring to en_core_web_sm. In other words, en after linking is not a "real" package, is just a name for en_core_web_sm.
However, it doesn't work the other way. You can't refer directly to en_core_web_sm because your system doesn't know you have it installed. When you did spacy download en you basically did a pip install. So pip knows that you have a package named en installed for your python distribution, but knows nothing about the package en_core_web_sm. This package is just replacing package en when you import it, which means that package en is just a softlink to en_core_web_sm.
Of course, you can directly download en_core_web_sm, using the command: python -m spacy download en_core_web_sm, or you can even link the name en to other models as well. For example, you could do python -m spacy download en_core_web_lg and then python -m spacy link en_core_web_lg en. That would make en a name for en_core_web_lg, which is a large spaCy model for the English language.
Hope it is clear now :)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With