I have a DataFrame like :
     0    1    2
0  0.0  1.0  2.0
1  NaN  1.0  2.0
2  NaN  NaN  2.0
What I want to get is
Out[116]: 
     0    1    2
0  0.0  1.0  2.0
1  1.0  2.0  NaN
2  2.0  NaN  NaN
This is my approach as of now.
df.apply(lambda x : (x[x.notnull()].values.tolist()+x[x.isnull()].values.tolist()),1)
Out[117]: 
     0    1    2
0  0.0  1.0  2.0
1  1.0  2.0  NaN
2  2.0  NaN  NaN
Is there any efficient way to achieve this ? apply Here is way to slow .
Thank you for your assistant!:) 
My real data size
df.shape
Out[117]: (54812040, 1522)
Here's a NumPy solution using justify -
In [455]: df
Out[455]: 
     0    1    2
0  0.0  1.0  2.0
1  NaN  1.0  2.0
2  NaN  NaN  2.0
In [456]: pd.DataFrame(justify(df.values, invalid_val=np.nan, axis=1, side='left'))
Out[456]: 
     0    1    2
0  0.0  1.0  2.0
1  1.0  2.0  NaN
2  2.0  NaN  NaN
If you want to save memory, assign it back instead -
df[:] = justify(df.values, invalid_val=np.nan, axis=1, side='left')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With