Suppose I have a table which has many columns, only a few columns is float type, others are small integers, for example:
col1, col2, col3, col4
1.31 1 2 3
2.33 3 5 4
...
How can I store this effectively, suppose I use np.float32
for this dataset, the storage is wasted, because other columns only have a small integer, they don't need so much space. If I use np.int16
, the float column is not exact, which also what I wanted. Therefore how do I deal with the situation like this?
Suppose I also have a string column, which make me more confused, how should I store the data?
col1, col2, col3, col4, col5
1.31 1 2 3 "a"
2.33 3 5 4 "b"
...
To make things simpler, lets suppose the string column has fix length strings only, for example, length of 3.
I'm going to demonstrate the structured array approach:
I'm guessing you are starting with a csv file 'table'. If not it's still the easiest way to turn your sample into an array:
In [40]: txt = '''col1, col2, col3, col4, col5
...: 1.31 1 2 3 "a"
...: 2.33 3 5 4 "b"
...: '''
In [42]: data = np.genfromtxt(txt.splitlines(), names=True, dtype=None, encoding=None)
In [43]: data
Out[43]:
array([(1.31, 1, 2, 3, '"a"'), (2.33, 3, 5, 4, '"b"')],
dtype=[('col1', '<f8'), ('col2', '<i8'), ('col3', '<i8'), ('col4', '<i8'), ('col5', '<U3')])
With these parameters, genfromtxt
takes care of creating a structured array. Note it is a 1d array with 5 fields. Fields dtype are determined from the data.
In [44]: import h5py
...
In [46]: f = h5py.File('struct.h5', 'w')
In [48]: ds = f.create_dataset('data',data=data)
...
TypeError: No conversion path for dtype: dtype('<U3')
But h5py
has problems saving the unicode strings (default for py3). There may be ways around that, but here it will be simpler to convert the string dtype to bytestrings. Besides, that'll be more compact.
To convert that, I'll make a new dtype
, and use astype
. Alternatively I could specify the dtypes in the genfromtxt
call.
In [49]: data.dtype
Out[49]: dtype([('col1', '<f8'), ('col2', '<i8'), ('col3', '<i8'), ('col4', '<i8'), ('col5', '<U3')])
In [50]: data.dtype.descr
Out[50]:
[('col1', '<f8'),
('col2', '<i8'),
('col3', '<i8'),
('col4', '<i8'),
('col5', '<U3')]
In [51]: dt1 = data.dtype.descr
In [52]: dt1[-1] = ('col5', 'S3')
In [53]: data.astype(dt1)
Out[53]:
array([(1.31, 1, 2, 3, b'"a"'), (2.33, 3, 5, 4, b'"b"')],
dtype=[('col1', '<f8'), ('col2', '<i8'), ('col3', '<i8'), ('col4', '<i8'), ('col5', 'S3')])
Now it saves the array without problem:
In [54]: data1 = data.astype(dt1)
In [55]: data1
Out[55]:
array([(1.31, 1, 2, 3, b'"a"'), (2.33, 3, 5, 4, b'"b"')],
dtype=[('col1', '<f8'), ('col2', '<i8'), ('col3', '<i8'), ('col4', '<i8'), ('col5', 'S3')])
In [56]: ds = f.create_dataset('data',data=data1)
In [57]: ds
Out[57]: <HDF5 dataset "data": shape (2,), type "|V35">
In [58]: ds[:]
Out[58]:
array([(1.31, 1, 2, 3, b'"a"'), (2.33, 3, 5, 4, b'"b"')],
dtype=[('col1', '<f8'), ('col2', '<i8'), ('col3', '<i8'), ('col4', '<i8'), ('col5', 'S3')])
I could make further modifications, shortening one or more of the int fields:
In [60]: dt1[1] = ('col2','i2')
In [61]: dt1[2] = ('col3','i2')
In [62]: dt1
Out[62]:
[('col1', '<f8'),
('col2', 'i2'),
('col3', 'i2'),
('col4', '<i8'),
('col5', 'S3')]
In [63]: data1 = data.astype(dt1)
In [64]: data1
Out[64]:
array([(1.31, 1, 2, 3, b'"a"'), (2.33, 3, 5, 4, b'"b"')],
dtype=[('col1', '<f8'), ('col2', '<i2'), ('col3', '<i2'), ('col4', '<i8'), ('col5', 'S3')])
In [65]: ds1 = f.create_dataset('data1',data=data1)
ds1
has a more compact storage, 'V23' vs 'V35'
In [67]: ds1
Out[67]: <HDF5 dataset "data1": shape (2,), type "|V23">
In [68]: ds1[:]
Out[68]:
array([(1.31, 1, 2, 3, b'"a"'), (2.33, 3, 5, 4, b'"b"')],
dtype=[('col1', '<f8'), ('col2', '<i2'), ('col3', '<i2'), ('col4', '<i8'), ('col5', 'S3')])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With