I'm looking for the equivalent function in R "which" in python. Does anybody know how to adapt it?
For example:
set_false_over <- length(datapoints[which(labels==FALSE & datapoints>=unique_values[i])])
You can use numpy.where, but it's unnecessary in your use case:
In [8]: import numpy as np
In [9]: x = np.arange(9.).reshape(3, 3)
In [10]: x
Out[10]:
array([[ 0., 1., 2.],
[ 3., 4., 5.],
[ 6., 7., 8.]])
In [11]: x[np.where(x>5)]
Out[11]: array([ 6., 7., 8.])
In [12]: x[x>5]
Out[12]: array([ 6., 7., 8.])
The > op returns you a matrix of bools first:
In [16]: x>5
Out[16]:
array([[False, False, False],
[False, False, False],
[ True, True, True]], dtype=bool)
while np.where returns you a tuple of the Xs and Ys where some condition matches:
In [15]: np.where(x>5)
Out[15]: (array([2, 2, 2], dtype=int64), array([0, 1, 2], dtype=int64))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With