Using R, I am trying to modify a standard plot which I get from performing a ridge regression using cv.glmnet.
I perform a ridge regression
lam = 10 ^ seq (-2,3, length =100)
cvfit = cv.glmnet(xTrain, yTrain, alpha = 0, lambda = lam)
I can plot the coefficients against log lambda by doing the following
plot(cvfit $glmnet.fit, "lambda")

How can plot the coefficients against the actual lambda values (not log lambda) and label the each predictor on the plot?
You can do it like this, the values are stored under $beta and $lambda, under glmnet.fit:
library(glmnet)
xTrain = as.matrix(mtcars[,-1])
yTrain = mtcars[,1]
lam = 10 ^ seq (-2,3, length =30)
cvfit = cv.glmnet(xTrain, yTrain, alpha = 0, lambda = lam)
betas = as.matrix(cvfit$glmnet.fit$beta)
lambdas = cvfit$lambda
names(lambdas) = colnames(betas)
Using a ggplot solution, we try to pivot it long and plot using a log10 x scale and ggrepel to add the labels:
library(ggplot2)
library(tidyr)
library(dplyr)
library(ggrepel)
as.data.frame(betas) %>%
tibble::rownames_to_column("variable") %>%
pivot_longer(-variable) %>%
mutate(lambda=lambdas[name]) %>%
ggplot(aes(x=lambda,y=value,col=variable)) +
geom_line() +
geom_label_repel(data=~subset(.x,lambda==min(lambda)),
aes(label=variable),nudge_x=-0.5) +
scale_x_log10()

In base R, maybe something like this, I think downside is you can't see labels very well:
pal = RColorBrewer::brewer.pal(nrow(betas),"Set3")
plot(NULL,xlim=range(log10(lambdas))+c(-0.3,0.3),
ylim=range(betas),xlab="lambda",ylab="coef",xaxt="n")
for(i in 1:nrow(betas)){
lines(log10(lambdas),betas[i,],col=pal[i])
}
axis(side=1,at=(-2):2,10^((-2):2))
text(x=log10(min(lambdas)) - 0.1,y = betas[,ncol(betas)],
labels=rownames(betas),cex=0.5)
legend("topright",fill=pal,rownames(betas))

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With