Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Pandas: using groupby to get mean for each data category

I have a dataframe that looks like this:

>>> df[['data','category']]
Out[47]: 
          data     category
  0       4610            2
 15       4610            2
 22       5307            7
 23       5307            7
 25       5307            7
...        ...          ...

Both data and category are numeric so I'm able to do this:

>>> df[['data','category']].mean()
Out[48]: 
data        5894.677985
category      13.805886
dtype: float64

And i'm trying to get the mean for each category. It looks straight forward but when I do this:

>>> df[['data','category']].groupby('category').mean()

or

>>> df.groupby('category')['data'].mean()

It returns an error like this:

DataError: No numeric types to aggregate

There's no error if I replace both functions above with .count().

What do I do wrongly? What's the correct way to get the mean of each category?

like image 485
cahoy Avatar asked Oct 23 '25 13:10

cahoy


2 Answers

Can you do a df.dtypes ? In the example below type is Int as it works fine.

    import pandas as pd

    ##group by 1 columns
    df = pd.DataFrame({' data': [4610, 4611, 4612, 4613], 'Category': [2, 2,    7, 7]})
    print df.groupby('Category'). mean()


    ##Mutiple columns to group by
    df1 = pd.DataFrame({' data': [4610, 4611, 4612, 4613], 'Category': [2,    2, 7, 7], 'Category2' : ['A','B','A','B']})
    key=['Category','Category2']
    print df1.groupby( key).mean()

 Category Category2       
 2        A           4610
          B           4611
 7        A           4612
          B           4613
like image 169
Amrita Sawant Avatar answered Oct 25 '25 03:10

Amrita Sawant


As mentioned, you don't give an example of the testTime and passing_site data, but I'm guessing that they're floating rate numbers. As I'm sure you can imagine, you can't group on floating numbers. Rather, you would need to group on integers or categories of some type.

try something like:

df.groupby(['data', 'category'])['passing_site', 'testTime'].mean()

You're grouping on 'data' and 'category', and then calculating the mean for the numerical columns 'passing_site' and 'testTime'.

like image 31
Alexander Avatar answered Oct 25 '25 04:10

Alexander