I have a dataframe that looks like this:
data.head()
Out[2]:
Area Area Id Variable Name Variable Id Year \
0 Argentina 9 Conservation agriculture area 4454 1982
1 Argentina 9 Conservation agriculture area 4454 1987
2 Argentina 9 Conservation agriculture area 4454 1992
3 Argentina 9 Conservation agriculture area 4454 1997
4 Argentina 9 Conservation agriculture area 4454 2002
Value Symbol Md
0 2.0
1 6.0
2 500.0
That I would like to pivot so that Variable Name is the columns, Area and Year are the index and Value are the values. The most intuitive way to me is using:
data.pivot(index=['Area', 'Year'], columns='Variable Name', values='Value)
However I get the error:
Traceback (most recent call last):
File "C:\Users\patri\Miniconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-4-4c786386b703>", line 1, in <module>
pd.concat(data_list).pivot(index=['Area', 'Year'], columns='Variable Name', values='Value')
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\frame.py", line 3853, in pivot
return pivot(self, index=index, columns=columns, values=values)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\reshape\reshape.py", line 377, in pivot
index=MultiIndex.from_arrays([index, self[columns]]))
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\series.py", line 250, in __init__
data = SingleBlockManager(data, index, fastpath=True)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\internals.py", line 4117, in __init__
fastpath=True)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\internals.py", line 2719, in make_block
return klass(values, ndim=ndim, fastpath=fastpath, placement=placement)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\internals.py", line 1844, in __init__
placement=placement, **kwargs)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\internals.py", line 115, in __init__
len(self.mgr_locs)))
ValueError: Wrong number of items passed 119611, placement implies 2
How should I interpret this? I've also tried another way:
data.set_index(['Area', 'Variable Name', 'Year']).loc[:, 'Value'].unstack('Variable Name')
to try to get the same result, but I get this error:
Traceback (most recent call last):
File "C:\Users\patri\Miniconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-5-222325ea01e1>", line 1, in <module>
pd.concat(data_list).set_index(['Area', 'Variable Name', 'Year']).loc[:, 'Value'].unstack('Variable Name')
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\series.py", line 2028, in unstack
return unstack(self, level, fill_value)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\reshape\reshape.py", line 458, in unstack
fill_value=fill_value)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\reshape\reshape.py", line 110, in __init__
self._make_selectors()
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\reshape\reshape.py", line 148, in _make_selectors
raise ValueError('Index contains duplicate entries, '
ValueError: Index contains duplicate entries, cannot reshape
Is there something wrong with the data? I've confirmed that there are no duplicate combinations of Area, Variable Name, and Year in any row of the dataframe, so I don't think there should be any duplicate entries but I could be wrong. How can I convert from long to wide format given that both of these methods are not currently working? I've checked answers here and here, but they are both cases where some type I aggregation is involved.
I've tried using pivot_table like so:
data.pivot_table(index=['Area', 'Year'], columns='Variable Name', values='Value')
but I think some type of aggregation is being done and there are a lot of missing values in the dataset which leads to this error:
Traceback (most recent call last):
File "C:\Users\patri\Miniconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-7-77b28d2f0dbb>", line 1, in <module>
pd.concat(data_list).pivot_table(index=['Area', 'Year'], columns='Variable Name', values='Value')
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\reshape\pivot.py", line 136, in pivot_table
agged = grouped.agg(aggfunc)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\groupby.py", line 4036, in aggregate
return super(DataFrameGroupBy, self).aggregate(arg, *args, **kwargs)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\groupby.py", line 3468, in aggregate
result, how = self._aggregate(arg, _level=_level, *args, **kwargs)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\base.py", line 435, in _aggregate
**kwargs), None
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\base.py", line 391, in _try_aggregate_string_function
return f(*args, **kwargs)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\groupby.py", line 1037, in mean
return self._cython_agg_general('mean', **kwargs)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\groupby.py", line 3354, in _cython_agg_general
how, alt=alt, numeric_only=numeric_only)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\groupby.py", line 3425, in _cython_agg_blocks
raise DataError('No numeric types to aggregate')
pandas.core.base.DataError: No numeric types to aggregate
I think you need first convert column Value to numeric and then use pivot_table with default aggregate function mean:
#if all float data saved as strings
data['Value'] = data['Value'].astype(float)
#if some bad data like strings and first method return value error
data['Value'] = pd.to_numeric(data['Value'], errors='coerce')
data.pivot_table(index=['Area', 'Year'], columns='Variable Name', values='Value')
Or:
data.groupby(['Area', 'Variable Name', 'Year'])[ 'Value'].mean().unstack('Variable Name')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With