I encountered the following algorithmic question which has strict constraints on runtime (<10s and no large memory footprint) and I am stumped. My approach fails half the test cases.
Question
A box contains a number of items that can only br removed 1 at a time or 3 at a time.
How many ways can the box be emptied? the answer can be very large so return it as modulo of 10^9+7.
for example,there are n=7 items initially.They can be removed nine ways,as follows:
1.(1,1,1,1,1,1,1)
2.(1.1.1.1.3)
3.(1,1,1,3,1)
4.(1,1,3,1,1)
5.(1,3,1,1,1)
6.(3,1,1,1,1)
7.(1,3,3)
8.(3,1,3)
9.(3,3,1)
So the function should return 9.
Function Description:
Your function must take in a parameter, n for the number of items, and return an integer which denotes the number of ways to empty the box.
Constraints: 1<=n<=10^8
Sample cases :
Input: 1
Sample OutPut: 1
Explanation: There is only 1 way to remove 1 item. Answer=(1%1000000007)=1
Input: 7
Sample OutPut: 9
There is only 9 ways to remove 7 items
My Approach
This leads to a standard recurrence relation where f(n) = f(n-3) + f(n-1) for n > 2, so i did it as follows
def memoized_number_of_ways(dic, n):
if n not in dic:
dic[n] = memoized_number_of_ways(dic, n-3) + memoized_number_of_ways(dic, n-1)
return dic[n]
def numberOfWays(n):
# Write your code here
memoize = {1:1,2:1,3:2}
import math
ans = memoized_number_of_ways(memoize,n)
return ans % (math.pow(10,9) + 7)
However this fails on any case where n > 10**2. How can you do this problem while accomodating n up to 10^8 and in less than 10s with not much memory?
Just write your recurrence using matrices (pardon my way of writing matrices, StackOverflow doesn't allow LaTeX).
[f(n) ] = [1 0 1] [f(n-1) ]
[f(n-1)] = [1 0 0] [f(n-2) ]
[f(n-2)] = [0 1 0] [f(n-3) ]
Now all you have to do is raise a 3x3 matrix (modulo fixed constant) to power n (or n-3 or something like that, depending on your "base case column vector", fill in the details), and then multiply it by a "base case column vector". This can be done in time O(logn).
PS: You may want to lookup matrix exponentiation.
Three solutions, fastest takes about 31 μs for n=108 on tio.run (which has medium-fast computers).
A matrix power solution like described by advocateofnone that takes about 1 millisecond (Try it online!):
import numpy as np
from time import time
class ModInt:
def __init__(self, x):
self.x = x % (10**9 + 7)
def __add__(a, b):
return ModInt(a.x + b.x)
def __mul__(a, b):
return ModInt(a.x * b.x)
def __str__(self):
return str(self.x)
def solve(n):
O = ModInt(0)
I = ModInt(1)
A = np.matrix([[O,I,O], [O,O,I], [I,O,I]])
return (A**n)[2,2]
for _ in range(3):
t0 = time()
print(solve(10**8), time() - t0)
Output (result and time in seconds for n=108, three attempts):
109786077 0.0010712146759033203
109786077 0.0010180473327636719
109786077 0.0009677410125732422
Another, taking about 0.5 milliseconds (Try it online!):
import numpy as np
from time import time
def solve(n):
A = np.matrix([[0,1,0], [0,0,1], [1,0,1]])
power = 1
mod = 10**9 + 7
while n:
if n % 2:
power = power * A % mod
A = A**2 % mod
n //= 2
return power[2,2]
for _ in range(3):
t0 = time()
print(solve(10**8), time() - t0)
One based on @rici's solution in the comments, takes about 31 μs (Try it online!):
from timeit import repeat
def solve(n):
m = 10**9 + 7
def abc(n):
if n == 0:
return 0, 1, 0
a, b, c = abc(n // 2)
d = a + c
e = b + d
A = 2*a*b + c*c
C = 2*b*c + d*d
E = 2*c*d + e*e
D = A + C
B = E - D
if n % 2:
A, B, C = B, C, D
return A%m, B%m, C%m
return sum(abc(n)) % m
n = 10**8
print(solve(n))
for _ in range(3):
t = min(repeat(lambda: solve(n), 'gc.enable()', number=1000)) / 1000
print('%.1f μs' % (t * 1e6))
Explanation: Looking at the matrix powers from my previous solutions, I noticed they only actually contain five different values, and they're consecutive result numbers from our desired sequence. For example, A**19 is:
[[277 189 406]
[406 277 595]
[595 406 872]]
I gave them names in increasing order:
| b a c |
| c b d |
| d c e |
Squaring that matrix results in a matrix for larger n, with entries A/B/C/D/E. And if you square the above matrix, you'll find the relationships A = 2*a*b + c*c etc.
My helper function abc(n) computes the entries a/b/c of the n-th matrix power. For n=0, that's the identity matrix, so my a/b/c are 0/1/0 there. And in the end I, return the e-value (computed as e=b+d=a+b+c).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With