In e-commerce application I have documents like this:
{ category:'A', ..., price:122,
attr:{ width:6, height:4, hasLCD:true, lcdType:'some text', ..., a36:null }
}
I.e. every product has many attributes of various simple types.
Now I want to filter products by dynamic queries containing top level fields plus some attributes. For example:
find({category:'A', price:{$lt:200}, ...,
'attr.height':{$lt:6}, 'attr.hasLCD':true, 'attr.lcdType':{$in:[...]}, ...})
And I'd like this to perform fast.
Trying to index on all possible 'attr.*' variants gives me an error (too many compound keys). I also suspect that if I index it that way and then omit one of attrs in query index won't work.
Trying to index on 'attr' as a whole does not help either.
What is the proper way to model this under MongoDB?
Update
I have tried this approach (also mentioned here). I.e. store attributes as array of key-value pairs:
attr2: [ {tag:'lcgType', value:'some text'}, ...
And index it like this:
ensureIndex({ 'attr2.tag':1, 'attr2.value':1 })
And query like this:
find({attr2:{$all:[
{$elemMatch:{tag:'bestseller',value:true}},
{$elemMatch:{tag:'weight',value:{$lte:100}}}
]}})
Now explain() says that it is using "BtreeCursor attr2.tag_1_attr2.value_1" but still "nscanned" : 31607 and the whole execution time have actually increased (compared to non-indexed scenario).
Something is wrong here.
Sub-question
What if I select some (less than 31) most frequently queried attributes and try to index on those. If I put all of them in single compound index:
ensureIndex({'attr.a1':1, 'attr.a2':1, ...})
According to the docs this index won't be used for queries missing attr.a1 attribute.
How to define index in this case?
If you really have to allow a lot of filters, combinations and possibly even sorts, MongoDB is not a good fit because it uses only one index per query. The number of indexes then grows way too fast, because compound keys are somewhat inflexible (that should answer the subquestion) and becomes a performance hog.
Use a search database like ElasticSearch, SolR, etc. instead that comes with the features you need. You can the use a $in on the ids that the search server returned if you want to keep the base information in MongoDB (it's usually a good idea to have the search database simply replicate the information of the primary data store so you don't need to sync changes two-way, which would be a nightmare)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With