I want to calculate the Fibonacci of very large value of N ie. 10^6 with a complexity of O(logN). Here is my code but it gives the result for 10^6 in 30 seconds which is very time consuming.Help me point out the mistake.I have to give the output in modulo 10^9+7.
static BigInteger mod=new BigInteger("1000000007");
BigInteger fibo(long n){
BigInteger F[][] = {{BigInteger.ONE,BigInteger.ONE},{BigInteger.ONE,BigInteger.ZERO}};
if(n == 0)
return BigInteger.ZERO;
power(F, n-1);
return F[0][0].mod(mod);
}
void power(BigInteger F[][], long n) {
if( n == 0 || n == 1)
return;
BigInteger M[][] = {{BigInteger.ONE,BigInteger.ONE},{BigInteger.ONE,BigInteger.ZERO}};
power(F, n/2);
multiply(F, F);
if( n%2 != 0 )
multiply(F, M);
}
void multiply(BigInteger F[][], BigInteger M[][]){
BigInteger x = (F[0][0].multiply(M[0][0])).add(F[0][1].multiply(M[1][0])) ;
BigInteger y = F[0][0].multiply(M[0][1]).add(F[0][1].multiply(M[1][1])) ;
BigInteger z = F[1][0].multiply(M[0][0]).add( F[1][1].multiply(M[1][0]));
BigInteger w = F[1][0].multiply(M[0][1]).add(F[1][1].multiply(M[1][1]));
F[0][0] = x;
F[0][1] = y;
F[1][0] = z;
F[1][1] = w;
}
Use these recurrences:
F2n−1 = Fn2 + Fn−12
F2n = (2Fn−1 + Fn) Fn
together with memoization. For example, in Python you could use the @functools.lru_cache decorator, like this:
from functools import lru_cache
@lru_cache(maxsize=None)
def fibonacci_modulo(n, m):
"""Compute the nth Fibonacci number modulo m."""
if n <= 3:
return (0, 1, 1, 2)[n] % m
elif n % 2 == 0:
a = fibonacci_modulo(n // 2 - 1, m)
b = fibonacci_modulo(n // 2, m)
return ((2 * a + b) * b) % m
else:
a = fibonacci_modulo(n // 2, m)
b = fibonacci_modulo(n // 2 + 1, m)
return (a * a + b * b) % m
this computes the 106th Fibonacci number (modulo 109 + 7) in a few microseconds:
>>> from timeit import timeit
>>> timeit(lambda:fibonacci_modulo(10 ** 6, 10 ** 9 + 7), number=1)
0.000083282997366
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With