I have a few questions about how APOPT solves MINLPs.
APOPT is an active-set Sequential Quadratic Programming (SQP) solver that uses Branch and Bound. APOPT uses a warm-start method to speed up successive Nonlinear Programming (NLP) solutions. There is more information about APOPT from Wikipedia, APMonitor documentation, and APOPT.com. There is benchmark information from a 2013 INFORMS presentation and in the 2014 APMonitor CACE paper.
Here is a sample MINLP problem solved with Python Gekko after getting the package with pip install gekko
from gekko import GEKKO
m = GEKKO() # Initialize gekko
m.options.SOLVER=1  # APOPT is an MINLP solver
# optional solver settings with APOPT
m.solver_options = ['minlp_maximum_iterations 500', \
                    # minlp iterations with integer solution
                    'minlp_max_iter_with_int_sol 10', \
                    # treat minlp as nlp
                    'minlp_as_nlp 0', \
                    # nlp sub-problem max iterations
                    'nlp_maximum_iterations 50', \
                    # 1 = depth first, 2 = breadth first
                    'minlp_branch_method 1', \
                    # maximum deviation from whole number
                    'minlp_integer_tol 0.05', \
                    # covergence tolerance
                    'minlp_gap_tol 0.01']
# Initialize variables
x1 = m.Var(value=1,lb=1,ub=5)
x2 = m.Var(value=5,lb=1,ub=5)
# Integer constraints for x3 and x4
x3 = m.Var(value=5,lb=1,ub=5,integer=True)
x4 = m.Var(value=1,lb=1,ub=5,integer=True)
m.Equation(x1*x2*x3*x4>=25)
m.Equation(x1**2+x2**2+x3**2+x4**2==40)
m.Obj(x1*x4*(x1+x2+x3)+x3) # Objective
m.solve(disp=False) # Solve
print('x1: ' + str(x1.value))
print('x2: ' + str(x2.value))
print('x3: ' + str(x3.value))
print('x4: ' + str(x4.value))
print('Objective: ' + str(m.options.objfcnval))
The iteration summary gives more information about the branch and bound process to find the solution.
 ----------------------------------------------
 Steady State Optimization with APOPT Solver
 ----------------------------------------------
Iter:     1 I:  0 Tm:      0.00 NLPi:    7 Dpth:    0 Lvs:    3 Obj:  1.70E+01 Gap:       NaN
--Integer Solution:   1.75E+01 Lowest Leaf:   1.70E+01 Gap:   3.00E-02
Iter:     2 I:  0 Tm:      0.00 NLPi:    5 Dpth:    1 Lvs:    2 Obj:  1.75E+01 Gap:  3.00E-02
Iter:     3 I:  0 Tm:      0.00 NLPi:    6 Dpth:    1 Lvs:    2 Obj:  1.75E+01 Gap:  3.00E-02
--Integer Solution:   1.75E+01 Lowest Leaf:   1.70E+01 Gap:   3.00E-02
Iter:     4 I:  0 Tm:      0.00 NLPi:    6 Dpth:    2 Lvs:    1 Obj:  2.59E+01 Gap:  3.00E-02
Iter:     5 I:  0 Tm:      0.00 NLPi:    5 Dpth:    1 Lvs:    0 Obj:  2.15E+01 Gap:  3.00E-02
 No additional trial points, returning the best integer solution
 Successful solution
 ---------------------------------------------------
 Solver         :  APOPT (v1.0)
 Solution time  :   1.609999999345746E-002 sec
 Objective      :    17.5322673012512     
 Successful solution
 ---------------------------------------------------
x1: [1.3589086474]
x2: [4.5992789966]
x3: [4.0]
x4: [1.0]
Objective: 17.532267301
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With